ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-species consensus network of DNA strand displacement for concentration-to-strand translation

61   0   0.0 ( 0 )
 نشر من قبل Toshiyuki Yamane
 تاريخ النشر 2021
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose novel chemical reaction networks to translate levels of concentration into unique DNA strand species, which we call concentration translators. Our design of the concentration translators is based on combination of two chemical reaction networks, consensus network and conversion network with any number of chemical species. We give geometric analysis of the proposed CRNs from the viewpoint of nonlinear dynamical systems and show that the CRNs can actually operate as translator. Our concentration translators exploit DNA strand displacement (DSD) reaction, which is known for a universal reaction that can implement arbitrary chemical reaction networks. We demonstrate two specific types of concentration translators (translator A and B) with different switching behavior and biochemical cost and compared their characteristics computationally. The proposed concentration translators have an advantage of being able to readout the concentration of targeted nucleic acid strand without any fluorescence-based techniques. These characteristics can be tailored according to requirements from applications, including dynamic range, sensitivity and implementation cost.

قيم البحث

اقرأ أيضاً

We perform a spatially resolved simulation study of an AND gate based on DNA strand displacement using several lengths of the toehold and the adjacent domains. DNA strands are modelled using a coarse-grained dynamic bonding model {[}C. Svaneborg, Com p. Phys. Comm. 183, 1793 (2012){]}. We observe a complex transition path from the initial state to the final state of the AND gate. This path is strongly influenced by non-ideal effects due to transient bubbles revealing undesired toeholds and thermal melting of whole strands. We have also characterized the bound and unbound kinetics of single strands, and in particular the kinetics of the total AND operation and the three distinct distinct DNA transitions that it is based on. We observe a exponential kinetic dependence on the toehold length of the competitive displacement operation, but that the gate operation time is only weakly dependent on both the toehold and adjacent domain length. Our gate displays excellent logical fidelity in three input states, and quite poor fidelity in the fourth input state. This illustrates how non-ideality can have very selective effects on fidelity. Simulations and detailed analysis such as those presented here provide molecular insights into strand displacement computation, that can be also be expected in chemical implementations.
Single molecule force spectroscopy of DNA strands adsorbed at surfaces is a powerful technique used in air or liquid environments to quantify their mechanical properties. Although the force responses are limited to unfolding events so far, single bas e detection might be possible in more drastic cleanliness conditions such as ultra high vacuum. Here, we report on high resolution imaging and pulling attempts at low temperature (5K) of a single strand DNA (ssDNA) molecules composed of 20 cytosine bases adsorbed on Au(111) by scanning probe microscopy and numerical calculations. Using electrospray deposition technique, the ssDNA were successfully transferred from solution onto a surface kept in ultra high vacuum. Real space characterizations reveal that the ssDNA have an amorphous structure on gold in agreement with numerical calculations. Subsequent substrate annealing promotes the desorption of solvent molecules, DNA as individual molecules as well as the formation of DNA self assemblies. Furthermore, pulling experiments by force spectroscopy have been conducted to measure the mechanical response of the ssDNA while detaching. A periodic pattern of 0.2 to 0.3nm is observed in the force curve which arises from the stick slip of single nucleotide bases over the gold. Although an intra molecular response is obtained in the force curve, a clear distinction of each nucleotide detachment is not possible due the complex structure of ssDNA adsorbed on gold.
Cytosine methylation has been found to play a crucial role in various biological processes, including a number of human diseases. The detection of this small modification remains challenging. In this work, we computationally explore the possibility o f detecting methylated DNA strands through direct electrical conductance measurements. Using density functional theory and the Landauer-Buttiker method, we study the electronic properties and charge transport through an eight base-pair methylated DNA strand and its native counterpart. We first analyze the effect of cytosine methylation on the tight-binding parameters of two DNA strands and then model the transmission of the electrons and conductance through the strands both with and without decoherence. We find that the main difference of the tight-binding parameters between the native DNA and the methylated DNA lies in the on-site energies of (methylated) cytosine bases. The intra- and inter- strand hopping integrals between two nearest neighboring guanine base and (methylated) cytosine base also change with the addition of the methyl groups. Our calculations show that in the phase-coherent limit, the transmission of the methylated strand is close to the native strand when the energy is nearby the highest occupied molecular orbital level and larger than the native strand by 5 times in the bandgap. The trend in transmission also holds in the presence of the decoherence with the same rate. The lower conductance for the methylated strand in the experiment is suggested to be caused by the more stable structure due to the introduction of the methyl groups. We also study the role of the exchangecorrelation functional and the effect of contact coupling by choosing coupling strengths ranging from weak to strong coupling limit.
In 2009, Jonoska, Seeman and Wu showed that every graph admits a route for a DNA reporter strand, that is, a closed walk covering every edge either once or twice, in opposite directions if twice, and passing through each vertex in a particular way. T his corresponds to showing that every graph has an emph{edge-outer embedding}, that is, an orientable embedding with some face that is incident with every edge. In the motivating application, the objective is such a closed walk of minimum length. Here we give a short algorithmic proof of the original existence result, and also prove that finding a shortest length solution is NP-hard, even for $3$-connected cubic ($3$-regular) planar graphs. Independent of the motivating application, this problem opens a new direction in the study of graph embeddings, and we suggest new problems emerging from it.
We prove that the signature bound for the topological 4-genus of 3-strand torus knots is sharp, using McCoys twisting method. We also show that the bound is off by at most 1 for 4-strand and 6-strand torus knots, and improve the upper bound on the as ymptotic ratio between the topological 4-genus and the Seifert genus of torus knots from 2/3 to 14/27.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا