ﻻ يوجد ملخص باللغة العربية
We prove that the signature bound for the topological 4-genus of 3-strand torus knots is sharp, using McCoys twisting method. We also show that the bound is off by at most 1 for 4-strand and 6-strand torus knots, and improve the upper bound on the asymptotic ratio between the topological 4-genus and the Seifert genus of torus knots from 2/3 to 14/27.
We recursively determine the homotopy type of the space of any irreducible framed link in the 3-sphere, modulo rotations. This leads us to the homotopy type of the space of any knot in the solid torus, thus answering a question posed by Arnold. We si
All knots in $R^3$ possess Seifert surfaces, and so the classical Thurston-Bennequin and rotation (or Maslov) invariants for Legendrian knots in a contact structure on $R^3$ can be defined. The definitions extend easily to null-homologous knots in an
We classify the Legendrian torus knots in S^1times S^2 with its standard tight contact structure up to Legendrian isotopy.
We prove that the topological locally flat slice genus of large torus knots takes up less than three quarters of the ordinary genus. As an application, we derive the best possible linear estimate of the topological slice genus for torus knots with non-maximal signature invariant.
Given a 3-manifold $Y$ and a free homotopy class in $[S^1,Y]$, we investigate the set of topological concordance classes of knots in $Y times [0,1]$ representing the given homotopy class. The concordance group of knots in the 3-sphere acts on this se