ﻻ يوجد ملخص باللغة العربية
Spatiotemporal forecasting plays an essential role in various applications in intelligent transportation systems (ITS), such as route planning, navigation, and traffic control and management. Deep Spatiotemporal graph neural networks (GNNs), which capture both spatial and temporal patterns, have achieved great success in traffic forecasting applications. Understanding how GNNs-based forecasting work and the vulnerability and robustness of these models becomes critical to real-world applications. For example, if spatiotemporal GNNs are vulnerable in real-world traffic prediction applications, a hacker can easily manipulate the results and cause serious traffic congestion and even a city-scale breakdown. However, despite that recent studies have demonstrated that deep neural networks (DNNs) are vulnerable to carefully designed perturbations in multiple domains like objection classification and graph representation, current adversarial works cannot be directly applied to spatiotemporal forecasting due to the causal nature and spatiotemporal mechanisms in forecasting models. To fill this gap, in this paper we design Spatially Focused Attack (SFA) to break spatiotemporal GNNs by attacking a single vertex. To achieve this, we first propose the inverse estimation to address the causality issue; then, we apply genetic algorithms with a universal attack method as the evaluation function to locate the weakest vertex; finally, perturbations are generated by solving an inverse estimation-based optimization problem. We conduct experiments on real-world traffic data and our results show that perturbations in one vertex designed by SA can be diffused into a large part of the graph.
Node injection attack on Graph Neural Networks (GNNs) is an emerging and practical attack scenario that the attacker injects malicious nodes rather than modifying original nodes or edges to affect the performance of GNNs. However, existing node injec
Recent years have witnessed the emergence and development of graph neural networks (GNNs), which have been shown as a powerful approach for graph representation learning in many tasks, such as node classification and graph classification. The researc
Graph neural networks (GNNs) have shown broad applicability in a variety of domains. Some of these domains, such as social networks and product recommendations, are fertile ground for malicious users and behavior. In this paper, we show that GNNs are
Backdoor attacks represent a serious threat to neural network models. A backdoored model will misclassify the trigger-embedded inputs into an attacker-chosen target label while performing normally on other benign inputs. There are already numerous wo
Knowledge graph embedding (KGE) is a technique for learning continuous embeddings for entities and relations in the knowledge graph.Due to its benefit to a variety of downstream tasks such as knowledge graph completion, question answering and recomme