ﻻ يوجد ملخص باللغة العربية
The charge delocalization error, besides nondynamic correlation, has been a major challenge to density functional theory. Contemporary functionals undershoot the dissociation of symmetric charged dimers A2+, a simple but stringent test, predict a spurious barrier and improperly delocalize charges for charged molecular clusters. We extend a functional designed for nondynamic correlation to treat the charge delocalization error by modifying the nondynamic correlation for parallel spins. The modified functional eliminates those problems and reduces the multielectron self-interaction error. Furthermore, its results are the closest to those of CCSD(T) in the whole range of the dissociation compared with contemporary functionals. It correctly localizes the net positive charge in (CH4)n+ clusters and predicts a nearly constant ionization potential as a result. Testing of the SIE4x4 set shows that the new functional outperforms a wide variety of functionals assessed for this set in the literature. Overall, we show the feasibility of treating charge delocalization together with nondynamic correlation.
A relativistic density-functional theory based on a Fock-space effective quantum-electrodynamics (QED) Hamiltonian using the Coulomb or Coulomb-Breit two-particle interaction is developed. This effective QED theory properly includes the effects of va
The time-dependent density functional theory (TDDFT) has been broadly used to investigate the excited-state properties of various molecular systems. However, the current TDDFT heavily relies on outcomes from the corresponding ground-state density fun
In numerical computations of response properties of electronic systems, the standard model is Kohn-Sham density functional theory (KS-DFT). Here we investigate the mathematical status of the simplest class of excitations in KS-DFT, HOMO-LUMO excitati
We extend to strongly correlated molecular systems the recently introduced basis-set incompleteness correction based on density-functional theory (DFT) [E. Giner et al., J. Chem. Phys. 149, 194301 (2018)]. This basis-set correction relies on a mappin
Exciton formation leads to J-bands in solid pentacene. Describing these exciton bands represents a challenge for both time-dependent (TD) density-functional theory (DFT) and for its semiempirical analogue, namely for TD density-functional tight bindi