ﻻ يوجد ملخص باللغة العربية
Recently a novel approach to find approximate exchange-correlation functionals in density-functional theory (DFT) was presented (U. Mordovina et. al., JCTC 15, 5209 (2019)), which relies on approximations to the interacting wave function using density-matrix embedding theory (DMET). This approximate interacting wave function is constructed by using a projection determined by an iterative procedure that makes parts of the reduced density matrix of an auxiliary system the same as the approximate interacting density matrix. If only the diagonal of both systems are connected this leads to an approximation of the interacting-to-non-interacting mapping of the Kohn-Sham approach to DFT. Yet other choices are possible and allow to connect DMET with other DFTs such as kinetic-energy DFT or reduced density-matrix functional theory. In this work we give a detailed review of the basics of the DMET procedure from a DFT perspective and show how both approaches can be used to supplement each other. We do so explicitly for the case of a one-dimensional lattice system, as this is the simplest setting where we can apply DMET and the one that was originally presented. Among others we highlight how the mappings of DFTs can be used to identify uniquely defined auxiliary systems and auxiliary projections in DMET and how to construct approximations for different DFTs using DMET inspired projections. Such alternative approximation strategies become especially important for DFTs that are based on non-linearly coupled observables such as kinetic-energy DFT, where the Kohn-Sham fields are no longer simply obtainable by functional differentiation of an energy expression, or for reduced density-matrix functional theories, where a straightforward Kohn-Sham construction is not feasible.
We present the first implementation of a density matrix renormalization group algorithm embedded in an environment described by density functional theory. The frozen density embedding scheme is used with a freeze-and-thaw strategy for a self-consiste
In this chapter, we provide a review of ground-state Kohn-Sham density-functional theory of electronic systems and some of its extensions, we present exact expressions and constraints for the exchange and correlation density functionals, and we discu
We present an textit{ab initio} theory for superconductors, based on a unique mapping between the statistical density operator at equilibrium, on the one hand, and the corresponding one-body reduced density matrix $gamma$ and the anomalous density $c
We construct a density-functional formalism adapted to uniform external magnetic fields that is intermediate between conventional Density Functional Theory and Current-Density Functional Theory (CDFT). In the intermediate theory, which we term LDFT,
Quantum embedding based on the (one-electron reduced) density matrix is revisited by means of the unitary Householder transformation. While being exact and equivalent to (but formally simpler than) density matrix embedding theory (DMET) in the non-in