ﻻ يوجد ملخص باللغة العربية
The capability to achieve high-precision positioning accuracy has been considered as one of the most critical requirements for vehicle-to-everything (V2X) services in the fifth-generation (5G) cellular networks. The non-line-of-sight (NLOS) connectivity, coverage, reliability requirements, the minimum number of available anchors, and bandwidth limitations are among the main challenges to achieve high accuracy in V2X services. This work provides an overview of the potential solutions to provide the new radio (NR) V2X users (UEs) with high positioning accuracy in the future 3GPP releases. In particular, we propose a novel selective positioning solution to dynamically switch between different positioning technologies to improve the overall positioning accuracy in NR V2X services, taking into account the locations of V2X UEs and the accuracy of the collected measurements. Furthermore, we use high-fidelity system-level simulations to evaluate the performance gains of fusing the positioning measurements from different technologies in NR V2X services. Our numerical results show that the proposed hybridized schemes achieve a positioning error $boldsymbol{leq}$ 3 m with $boldsymbol{approx}$ 76% availability compared to $boldsymbol{approx}$ 55% availability when traditional positioning methods are used. The numerical results also reveal a potential gain of $boldsymbol{approx}$ 56% after leveraging the road-side units (RSUs) to improve the tail of the UEs positioning error distribution, i.e., worst-case scenarios, in NR V2X services.
The ever-increasing demand for intelligent, automated, and connected mobility solutions pushes for the development of an innovative sixth Generation (6G) of cellular networks. A radical transformation on the physical layer of vehicular communications
The fifth generation (5G) mobile networks with enhanced connectivity and positioning capabilities play an increasingly important role in the development of automated vehicle-to-everything (V2X) and other advanced industrial Internet of Things (IoT) s
In vehicle-to-everything (V2X) communications, reliability is one of the most important performance metrics in safety-critical applications such as advanced driving, remote driving, and vehicle platooning. In this paper, the link reliability of unica
In this paper, we introduce a direction of arrival (DoA) estimation method based on a technique named phase spectrometry (PS) that is mainly suitable for mm-Wave and Tera-hertz applications as an alternative for DoA estimation using antenna arrays. P
In this paper, we aim at interference mitigation in 5G millimeter-Wave (mm-Wave) communications by employing beamforming and Non-Orthogonal Multiple Access (NOMA) techniques with the aim of improving networks aggregate rate. Despite the potential cap