ﻻ يوجد ملخص باللغة العربية
In this paper, we aim at interference mitigation in 5G millimeter-Wave (mm-Wave) communications by employing beamforming and Non-Orthogonal Multiple Access (NOMA) techniques with the aim of improving networks aggregate rate. Despite the potential capacity gains of mm-Wave and NOMA, many technical challenges might hinder that performance gain. In particular, the performance of Successive Interference Cancellation (SIC) diminishes rapidly as the number of users increases per beam, which leads to higher intra-beam interference. Furthermore, intersection regions between adjacent cells give rise to inter-beam inter-cell interference. To mitigate both interference levels, optimal selection of the number of beams in addition to best allocation of users to those beams is essential. In this paper, we address the problem of joint user-cell association and selection of number of beams for the purpose of maximizing the aggregate network capacity. We propose three machine learning-based algorithms; transfer Q-learning (TQL), Q-learning, and Best SINR association with Density-based Spatial Clustering of Applications with Noise (BSDC) algorithms and compare their performance under different scenarios. Under mobility, TQL and Q-learning demonstrate 12% rate improvement over BSDC at the highest offered traffic load. For stationary scenarios, Q-learning and BSDC outperform TQL, however TQL achieves about 29% convergence speedup compared to Q-learning.
In this paper, we propose a transfer learning (TL)-enabled edge-CNN framework for 5G industrial edge networks with privacy-preserving characteristic. In particular, the edge server can use the existing image dataset to train the CNN in advance, which
Internet of Things is one of the most promising technology of the fifth-generation (5G) mobile broadband systems. Data-driven wireless services of 5G systems require unprecedented capacity and availability. The millimeter-wave based wireless communic
Industrial automation has created a high demand for private 5G networks, the deployment of which calls for an efficient and reliable solution to ensure strict compliance with the regulatory emission limits. While traditional methods for measuring out
The next generations of mobile networks will be deployed as ultra-dense networks, to match the demand for increased capacity and the challenges that communications in the higher portion of the spectrum (i.e., the mmWave band) introduce. Ultra-dense n
Millimeter-wave (mmWave) frequency bands offer a new frontier for next-generation wireless networks, popularly known as 5G, to enable multi-gigabit communication; however, the availability and reliability of mmWave signals are significantly limited d