ﻻ يوجد ملخص باللغة العربية
The fifth generation (5G) mobile networks with enhanced connectivity and positioning capabilities play an increasingly important role in the development of automated vehicle-to-everything (V2X) and other advanced industrial Internet of Things (IoT) systems. In this article, we address the prospects of 5G New Radio (NR) sidelink based V2X networks and their applicability for increasing the situational awareness, in terms of continuous tracking of moving connected machines and vehicles, in industrial systems. For increased system flexibility and fast deployments, we assume that the locations of the so-called anchor nodes are unknown, and describe an extended Kalman filter-based joint positioning and tracking framework in which the locations of both the anchor nodes and the target nodes can be estimated simultaneously. We assess and demonstrate the achievable 3D positioning and tracking performance in the context of a realistic industrial warehouse facility, through extensive ray-tracing based evaluations at the 26 GHz NR band. Our findings show that when both angle-based and time-based measurements are utilized, reaching sub-1 meter accuracy is realistic and that the system is also relatively robust against different node geometries. Finally, several research challenges towards achieving robust, high-performance and cost-efficient positioning solutions are outlined and discussed, identifying various potential directions for future work.
The ever-increasing demand for intelligent, automated, and connected mobility solutions pushes for the development of an innovative sixth Generation (6G) of cellular networks. A radical transformation on the physical layer of vehicular communications
The capability to achieve high-precision positioning accuracy has been considered as one of the most critical requirements for vehicle-to-everything (V2X) services in the fifth-generation (5G) cellular networks. The non-line-of-sight (NLOS) connectiv
The future of industrial applications is shaped by intelligent moving IoT devices, such as flying drones, advanced factory robots, and connected vehicles, which may operate (semi-)autonomously. In these challenging scenarios, dynamic radio connectivi
In vehicle-to-everything (V2X) communications, reliability is one of the most important performance metrics in safety-critical applications such as advanced driving, remote driving, and vehicle platooning. In this paper, the link reliability of unica
Real-time status update in future vehicular networks is vital to enable control-level cooperative autonomous driving. Cellular Vehicle-to-Everything (C-V2X), as one of the most promising vehicular wireless technologies, adopts a Semi-Persistent Sched