ﻻ يوجد ملخص باللغة العربية
Mobile crowdsensing (MCS) is an emerging sensing data collection pattern with scalability, low deployment cost, and distributed characteristics. Traditional MCS systems suffer from privacy concerns and fair reward distribution. Moreover, existing privacy-preserving MCS solutions usually focus on the privacy protection of data collection rather than that of data processing. To tackle faced problems of MCS, in this paper, we integrate federated learning (FL) into MCS and propose a privacy-preserving MCS system, called textsc{CrowdFL}. Specifically, in order to protect privacy, participants locally process sensing data via federated learning and only upload encrypted training models. Particularly, a privacy-preserving federated averaging algorithm is proposed to average encrypted training models. To reduce computation and communication overhead of restraining dropped participants, discard and retransmission strategies are designed. Besides, a privacy-preserving posted pricing incentive mechanism is designed, which tries to break the dilemma of privacy protection and data evaluation. Theoretical analysis and experimental evaluation on a practical MCS application demonstrate the proposed textsc{CrowdFL} can effectively protect participants privacy and is feasible and efficient.
Recently, Google and other 24 institutions proposed a series of open challenges towards federated learning (FL), which include application expansion and homomorphic encryption (HE). The former aims to expand the applicable machine learning models of
In this paper, we address the problem of privacy-preserving training and evaluation of neural networks in an $N$-party, federated learning setting. We propose a novel system, POSEIDON, the first of its kind in the regime of privacy-preserving neural
In this paper, we study the incentive mechanism design for real-time data aggregation, which holds a large spectrum of crowdsensing applications. Despite extensive studies on static incentive mechanisms, none of these are applicable to real-time data
Federated learning has emerged as a promising approach for collaborative and privacy-preserving learning. Participants in a federated learning process cooperatively train a model by exchanging model parameters instead of the actual training data, whi
Federated learning (FL) is an emerging paradigm that enables multiple organizations to jointly train a model without revealing their private data to each other. This paper studies {it vertical} federated learning, which tackles the scenarios where (i