ترغب بنشر مسار تعليمي؟ اضغط هنا

Boosting Privately: Privacy-Preserving Federated Extreme Boosting for Mobile Crowdsensing

86   0   0.0 ( 0 )
 نشر من قبل Zhuo Ma
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, Google and other 24 institutions proposed a series of open challenges towards federated learning (FL), which include application expansion and homomorphic encryption (HE). The former aims to expand the applicable machine learning models of FL. The latter focuses on who holds the secret key when applying HE to FL. For the naive HE scheme, the server is set to master the secret key. Such a setting causes a serious problem that if the server does not conduct aggregation before decryption, a chance is left for the server to access the users update. Inspired by the two challenges, we propose FedXGB, a federated extreme gradient boosting (XGBoost) scheme supporting forced aggregation. FedXGB mainly achieves the following two breakthroughs. First, FedXGB involves a new HE based secure aggregation scheme for FL. By combining the advantages of secret sharing and homomorphic encryption, the algorithm can solve the second challenge mentioned above, and is robust to the user dropout. Then, FedXGB extends FL to a new machine learning model by applying the secure aggregation scheme to the classification and regression tree building of XGBoost. Moreover, we conduct a comprehensive theoretical analysis and extensive experiments to evaluate the security, effectiveness, and efficiency of FedXGB. The results indicate that FedXGB achieves less than 1% accuracy loss compared with the original XGBoost, and can provide about 23.9% runtime and 33.3% communication reduction for HE based model update aggregation of FL.



قيم البحث

اقرأ أيضاً

Mobile crowdsensing (MCS) is an emerging sensing data collection pattern with scalability, low deployment cost, and distributed characteristics. Traditional MCS systems suffer from privacy concerns and fair reward distribution. Moreover, existing pri vacy-preserving MCS solutions usually focus on the privacy protection of data collection rather than that of data processing. To tackle faced problems of MCS, in this paper, we integrate federated learning (FL) into MCS and propose a privacy-preserving MCS system, called textsc{CrowdFL}. Specifically, in order to protect privacy, participants locally process sensing data via federated learning and only upload encrypted training models. Particularly, a privacy-preserving federated averaging algorithm is proposed to average encrypted training models. To reduce computation and communication overhead of restraining dropped participants, discard and retransmission strategies are designed. Besides, a privacy-preserving posted pricing incentive mechanism is designed, which tries to break the dilemma of privacy protection and data evaluation. Theoretical analysis and experimental evaluation on a practical MCS application demonstrate the proposed textsc{CrowdFL} can effectively protect participants privacy and is feasible and efficient.
In this paper, we initiate a study of functional minimization in Federated Learning. First, in the semi-heterogeneous setting, when the marginal distributions of the feature vectors on client machines are identical, we develop the federated functiona l gradient boosting (FFGB) method that provably converges to the global minimum. Subsequently, we extend our results to the fully-heterogeneous setting (where marginal distributions of feature vectors may differ) by designing an efficient variant of FFGB called FFGB.C, with provable convergence to a neighborhood of the global minimum within a radius that depends on the total variation distances between the client feature distributions. For the special case of square loss, but still in the fully heterogeneous setting, we design the FFGB.L method that also enjoys provable convergence to a neighborhood of the global minimum but within a radius depending on the much tighter Wasserstein-1 distances. For both FFGB.C and FFGB.L, the radii of convergence shrink to zero as the feature distributions become more homogeneous. Finally, we conduct proof-of-concept experiments to demonstrate the benefits of our approach against natural baselines.
The popularity, cost-effectiveness and ease of information exchange that electronic mails offer to electronic device users has been plagued with the rising number of unsolicited or spam emails. Driven by the need to protect email users from this grow ing menace, research in spam email filtering/detection systems has being increasingly active in the last decade. However, the adaptive nature of spam emails has often rendered most of these systems ineffective. While several spam detection models have been reported in literature, the reported performance on an out of sample test data shows the room for more improvement. Presented in this research is an improved spam detection model based on Extreme Gradient Boosting (XGBoost) which to the best of our knowledge has received little attention spam email detection problems. Experimental results show that the proposed model outperforms earlier approaches across a wide range of evaluation metrics. A thorough analysis of the model results in comparison to the results of earlier works is also presented.
In this paper, we address the problem of privacy-preserving training and evaluation of neural networks in an $N$-party, federated learning setting. We propose a novel system, POSEIDON, the first of its kind in the regime of privacy-preserving neural network training. It employs multiparty lattice-based cryptography to preserve the confidentiality of the training data, the model, and the evaluation data, under a passive-adversary model and collusions between up to $N-1$ parties. To efficiently execute the secure backpropagation algorithm for training neural networks, we provide a generic packing approach that enables Single Instruction, Multiple Data (SIMD) operations on encrypted data. We also introduce arbitrary linear transformations within the cryptographic bootstrapping operation, optimizing the costly cryptographic computations over the parties, and we define a constrained optimization problem for choosing the cryptographic parameters. Our experimental results show that POSEIDON achieves accuracy similar to centralized or decentralized non-private approaches and that its computation and communication overhead scales linearly with the number of parties. POSEIDON trains a 3-layer neural network on the MNIST dataset with 784 features and 60K samples distributed among 10 parties in less than 2 hours.
Federated learning has emerged as a promising approach for collaborative and privacy-preserving learning. Participants in a federated learning process cooperatively train a model by exchanging model parameters instead of the actual training data, whi ch they might want to keep private. However, parameter interaction and the resulting model still might disclose information about the training data used. To address these privacy concerns, several approaches have been proposed based on differential privacy and secure multiparty computation (SMC), among others. They often result in large communication overhead and slow training time. In this paper, we propose HybridAlpha, an approach for privacy-preserving federated learning employing an SMC protocol based on functional encryption. This protocol is simple, efficient and resilient to participants dropping out. We evaluate our approach regarding the training time and data volume exchanged using a federated learning process to train a CNN on the MNIST data set. Evaluation against existing crypto-based SMC solutions shows that HybridAlpha can reduce the training time by 68% and data transfer volume by 92% on average while providing the same model performance and privacy guarantees as the existing solutions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا