ﻻ يوجد ملخص باللغة العربية
In this paper, we show existence and uniqueness of solutions of the infinite horizon McKean-Vlasov FBSDEs using two different methods, which lead to two different sets of assumptions. We use these results to solve the infinite horizon mean field type control problems and mean field games.
We study the optimal control of path-dependent McKean-Vlasov equations valued in Hilbert spaces motivated by non Markovian mean-field models driven by stochastic PDEs. We first establish the well-posedness of the state equation, and then we prove the
We propose several algorithms to solve McKean-Vlasov Forward Backward Stochastic Differential Equations. Our schemes rely on the approximating power of neural networks to estimate the solution or its gradient through minimization problems. As a conse
In this paper, we consider the mean field game with a common noise and allow the state coefficients to vary with the conditional distribution in a nonlinear way. We assume that the cost function satisfies a convexity and a weak monotonicity property.
The goal of this paper is to study the long time behavior of solutions of the first-order mean field game (MFG) systems with a control on the acceleration. The main issue for this is the lack of small time controllability of the problem, which preven
Mean field games are concerned with the limit of large-population stochastic differential games where the agents interact through their empirical distribution. In the classical setting, the number of players is large but fixed throughout the game. Ho