ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal control of path-dependent McKean-Vlasov SDEs in infinite dimension

98   0   0.0 ( 0 )
 نشر من قبل Huyen Pham
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the optimal control of path-dependent McKean-Vlasov equations valued in Hilbert spaces motivated by non Markovian mean-field models driven by stochastic PDEs. We first establish the well-posedness of the state equation, and then we prove the dynamic programming principle (DPP) in such a general framework. The crucial law invariance property of the value function V is rigorously obtained, which means that V can be viewed as a function on the Wasserstein space of probability measures on the set of continuous functions valued in Hilbert space. We then define a notion of pathwise measure derivative, which extends the Wasserstein derivative due to Lions [41], and prove a related functional It{^o} formula in the spirit of Dupire [24] and Wu and Zhang [51]. The Master Bellman equation is derived from the DPP by means of a suitable notion of viscosity solution. We provide different formulations and simplifications of such a Bellman equation notably in the special case when there is no dependence on the law of the control.



قيم البحث

اقرأ أيضاً

147 - Erhan Bayraktar , Xin Zhang 2021
In this paper, we show existence and uniqueness of solutions of the infinite horizon McKean-Vlasov FBSDEs using two different methods, which lead to two different sets of assumptions. We use these results to solve the infinite horizon mean field type control problems and mean field games.
Various particle filters have been proposed over the last couple of decades with the common feature that the update step is governed by a type of control law. This feature makes them an attractive alternative to traditional sequential Monte Carlo whi ch scales poorly with the state dimension due to weight degeneracy. This article proposes a unifying framework that allows to systematically derive the McKean-Vlasov representations of these filters for the discrete time and continuous time observation case, taking inspiration from the smooth approximation of the data considered in Crisan & Xiong (2010) and Clark & Crisan (2005). We consider three filters that have been proposed in the literature and use this framework to derive It^{o} representations of their limiting forms as the approximation parameter $delta rightarrow 0$. All filters require the solution of a Poisson equation defined on $mathbb{R}^{d}$, for which existence and uniqueness of solutions can be a non-trivial issue. We additionally establish conditions on the signal-observation system that ensures well-posedness of the weighted Poisson equation arising in one of the filters.
In this paper we study the problem of semiparametric estimation for a class of McKean-Vlasov stochastic differential equations. Our aim is to estimate the drift coefficient of a MV-SDE based on observations of the corresponding particle system. We pr opose a semiparametric estimation procedure and derive the rates of convergence for the resulting estimator. We further prove that the obtained rates are essentially optimal in the minimax sense.
We study a class of non linear integro-differential equations on the Wasserstein space related to the optimal control of McKean--Vlasov jump-diffusions. We develop an intrinsic notion of viscosity solutions that does not rely on the lifting to an Hil bert space and prove a comparison theorem for these solutions. We also show that the value function is the unique viscosity solution.
83 - Meiqi Liu , Huijie Qiao 2020
The work concerns a class of path-dependent McKean-Vlasov stochastic differential equations with unknown parameters. First, we prove the existence and uniqueness of these equations under non-Lipschitz conditions. Second, we construct maximum likeliho od estimators of these parameters and then discuss their strong consistency. Third, a numerical simulation method for the class of path-dependent McKean-Vlasov stochastic differential equations is offered. Moreover, we estimate the errors between solutions of these equations and that of their numerical equations. Finally, we give an example to explain our result.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا