ترغب بنشر مسار تعليمي؟ اضغط هنا

Mean Field Games with Common Noises and Conditional Distribution Dependent FBSDEs

333   0   0.0 ( 0 )
 نشر من قبل Ziyu Huang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider the mean field game with a common noise and allow the state coefficients to vary with the conditional distribution in a nonlinear way. We assume that the cost function satisfies a convexity and a weak monotonicity property. We use the sufficient Pontryagin principle for optimality to transform the mean field control problem into existence and uniqueness of solution of conditional distribution dependent forward-backward stochastic differential equation (FBSDE). We prove the existence and uniqueness of solution of the conditional distribution dependent FBSDE when the dependence of the state on the conditional distribution is sufficiently small, or when the convexity parameter of the running cost on the control is sufficiently large. Two different methods are developed. The first method is based on a continuation of the coefficients, which is developed for FBSDE by Hu and Peng cite{YH2}. We apply the method to conditional distribution dependent FBSDE. The second method is to show the existence result on a small time interval by Banach fixed point theorem and then extend the local solution to the whole time interval.



قيم البحث

اقرأ أيضاً

147 - Erhan Bayraktar , Xin Zhang 2021
In this paper, we show existence and uniqueness of solutions of the infinite horizon McKean-Vlasov FBSDEs using two different methods, which lead to two different sets of assumptions. We use these results to solve the infinite horizon mean field type control problems and mean field games.
A theory of existence and uniqueness is developed for general stochastic differential mean field games with common noise. The concepts of strong and weak solutions are introduced in analogy with the theory of stochastic differential equations, and ex istence of weak solutions for mean field games is shown to hold under very general assumptions. Examples and counter-examples are provided to enlighten the underpinnings of the existence theory. Finally, an analog of the famous result of Yamada and Watanabe is derived, and it is used to prove existence and uniqueness of a strong solution under additional assumptions.
Mean field games are concerned with the limit of large-population stochastic differential games where the agents interact through their empirical distribution. In the classical setting, the number of players is large but fixed throughout the game. Ho wever, in various applications, such as population dynamics or economic growth, the number of players can vary across time which may lead to different Nash equilibria. For this reason, we introduce a branching mechanism in the population of agents and obtain a variation on the mean field game problem. As a first step, we study a simple model using a PDE approach to illustrate the main differences with the classical setting. We prove existence of a solution and show that it provides an approximate Nash-equilibrium for large population games. We also present a numerical example for a linear--quadratic model. Then we study the problem in a general setting by a probabilistic approach. It is based upon the relaxed formulation of stochastic control problems which allows us to obtain a general existence result.
196 - Ziyu Huang , Shanjian Tang 2021
In this paper, we develop a PDE approach to consider the optimal strategy of mean field controlled stochastic system. Firstly, we discuss mean field SDEs and associated Fokker-Plank eqautions. Secondly, we consider a fully-coupled system of forward-b ackward PDEs. The backward one is the Hamilton-Jacobi-Bellman equation while the forward one is the Fokker-Planck equation. Our main result is to show the existence of classical solutions of the forward-backward PDEs in the class $H^{1+frac{1}{4},2+frac{1}{2}}([0,T]timesmathbb{R}^n)$ by use of the Schauder fixed point theorem. Then, we use the solution to give the optimal strategy of the mean field stochastic control problem. Finally, we give an example to illustrate the role of our main result.
We propose and investigate a general class of discrete time and finite state space mean field game (MFG) problems with potential structure. Our model incorporates interactions through a congestion term and a price variable. It also allows hard constr aints on the distribution of the agents. We analyze the connection between the MFG problem and two optimal control problems in duality. We present two families of numerical methods and detail their implementation: (i) primal-dual proximal methods (and their extension with nonlinear proximity operators), (ii) the alternating direction method of multipliers (ADMM) and a variant called ADM-G. We give some convergence results. Numerical results are provided for two examples with hard constraints.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا