ﻻ يوجد ملخص باللغة العربية
We take a closer and new look at the effects of tidal forces on the free fall of a quantum particle inside a spherically symmetric gravitational field. We derive the corresponding Schrodinger equation for the particle by starting from the fully relativistic Klein-Gordon equation in order (i) to briefly discuss the issue of the equivalence principle and (ii) to be able to compare the relativistic terms in the equation to the tidal-force terms. To the second order of the nonrelativistic approximation, the resulting Schrodinger equation is that of a simple harmonic oscillator in the horizontal direction and that of an inverted harmonic oscillator in the vertical direction. Two methods are used for solving the equation in the vertical direction. The first method is based on a fixed boundary condition, and yields a discrete-energy spectrum with a wavefunction that is asymptotic to that of a particle in a linear gravitational field. The second method is based on time-varying boundary conditions and yields a quantized-energy spectrum that is decaying in time. Moving on to a freely-falling reference frame, we derive the corresponding time-dependent energy spectrum. The effects of tidal forces yield an expectation value for the Hamiltonian and a relative change in time of a wavepackets width that are mass-independent. The equivalence principle, which we understand here as the empirical equivalence between gravitation and inertia, is discussed based on these various results. For completeness, we briefly discuss the consequences expected to be obtained for a Bose-Einstein condensate or a superfluid in free fall using the nonlinear Gross-Pitaevskii equation.
Recently, the calculation of tunneling actions, that control the exponential suppression of the decay of metastable vacua, has been reformulated as an elementary variational problem in field space. This paper extends this formalism to include the eff
In this paper we show in a covariant and gauge invariant way that in general relativity, tidal forces are actually a hidden form of gravitational waves. This must be so because gravitational effects cannot occur faster than the speed of light. Any tw
The local conservation of a physical quantity whose distribution changes with time is mathematically described by the continuity equation. The corresponding time parameter, however, is defined with respect to an idealized classical clock. We consider
An atom falling freely into a Kerr black hole in a Boulware-like vacuum is shown to emit radiation with a Planck spectrum at the Hawking temperature. For a cloud of falling atoms with random initial times, the radiation is thermal. The existence of t
Good clocks are of importance both to fundamental physics and for applications in astronomy, metrology and global positioning systems. In a recent technological breakthrough, researchers at NIST have been able to achieve a stability of 1 part in $10^