ترغب بنشر مسار تعليمي؟ اضغط هنا

Acceleration radiation of an atom freely falling into a Kerr black hole and near-horizon conformal quantum mechanics

70   0   0.0 ( 0 )
 نشر من قبل Abhijit Chakraborty
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An atom falling freely into a Kerr black hole in a Boulware-like vacuum is shown to emit radiation with a Planck spectrum at the Hawking temperature. For a cloud of falling atoms with random initial times, the radiation is thermal. The existence of this radiation is due to the acceleration of the vacuum field modes with respect to the falling atom. Its properties can be traced to the dominant role of conformal quantum mechanics (CQM) in the neighborhood of the event horizon. We display this effect for a scalar field, though the acceleration radiation has a universal conformal behavior that is exhibited by all fields in the background of generic black holes.



قيم البحث

اقرأ أيضاً

A two-level atom freely falling towards a Schwarzschild black hole was recently shown to detect radiation in the Boulware vacuum in an insightful paper [M. O. Scully et al., Proc. Natl. Acad. Sci. U.S.A. 115, 8131 (2018)]. The two-state atom acts as a dipole detector and its interaction with the field can be modeled using a quantum optics approach. The relative acceleration between the scalar field and the detector causes the atom to detect the radiation. In this paper, we show that this acceleration radiation is driven by the near-horizon physics of the black hole. This insight reinforces the relevance of near-horizon conformal quantum mechanics for all the physics associated with the thermodynamic properties of the black hole. We additionally highlight the conformal aspects of the radiation that is given by a Planck distribution with the Hawking temperature.
The no-hair theorem can be tested in the strong gravity regime by using the top-bottom approach and the bottom-top approach. The non-Kerr spacetime of the later approach is an ideal framework to do the tests in the region very close to the black hole s. In this work, we propose a non-Kerr black hole metric (and its charged extension) that is accelerating as well. These new objects are studied for their basic properties and thermodynamics.
By introducing a specific etheric-like vector in the Dirac equation with Lorentz Invariance Violation (LIV) in the curved spacetime, an improved method for quantum tunneling radiation of fermions is proposed. As an example, we apply this new method t o a charged axisymmetric Kerr-Newman black hole. Firstly, considering LIV theory, we derive a modified dynamical equation of fermion with spin 1/2 in the Kerr-Newman black hole spacetime. Then we solve the equation and find the increase or decrease of black holes Hawking temperature and entropy are related to constants $a$ and $c$ of the Dirac equation with LIV in the curved spacetime. As $c$ is positive, the new Hawking temperature is about $ frac{sqrt{1+2a+2cmk_r^2}}{sqrt{1+2a}}$ times higher than that without modification, but the entropy will decrease. We also make a brief discussion for the case of high spin fermions.
We have studied electromagnetic line emissions from near-horizon region in the extremal Kerr-Taub-NUT black hole spacetime and then probe the effects of NUT charge on the electromagnetic line emissions. Due to the presence of the NUT charge, the equa torial plane is no more a symmetry plane of the KTN spacetime, which leads to that the dependence of electromagnetic line emission on the NUT charge for the observer in the Southern Hemisphere differs from that in the Northern one. Our result indicate that the electromagnetic line emission in the Kerr-Taub-NUT black hole case is brighter than that in the case of Kerr black hole for the observer in the equatorial plane or in the Southern Hemisphere, but it becomes more faint as the observers position deviates far from the equatorial plane in the Northern one. Moreover, we also probe effects of redshift factor on electromagnetic emission from near-horizon region in the extremal Kerr-Taub-NUT black hole spacetime.
We propose an analogy between the quantum physics of a black hole in its late stages of the evaporation process and a superfluid Bose Einstein Condensate (BEC), based on the Horowitz and Maldacena quantum final state projection model [JHEP 2004(02), 008]. The superfluid region is considered to be analogous to the interior of a black hole, and the normal fluid/superfluid interface is compared to the event horizon of a black hole. We theoretically investigate the possibility of recovering the wavefunction of particles incident on a superfluid BEC from the normal fluid, facilitated by the mode conversion processes occurring at the normal fluid/superfluid BEC interface. We also study how the correlations of an infalling mode with an external memory system can be preserved in the process, similar to Hayden and Preskills information mirror model for a black hole [JHEP 2007(09), 120]. Based on these analogies, we conjecture that the quantum state of bosons entering a black hole in its final state is the superfluid quantum ground state of interacting bosons. Our analogy suggests that the wavefunction of bosons falling into a black hole can be recovered from the outgoing Hawking modes. In the particular case when a hole-like quasiparticle (a density dip) is incident on the superfluid BEC causing the superfluid to shrink in size, our model indicates that the evaporation is unitary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا