ﻻ يوجد ملخص باللغة العربية
Recently, the calculation of tunneling actions, that control the exponential suppression of the decay of metastable vacua, has been reformulated as an elementary variational problem in field space. This paper extends this formalism to include the effect of gravity. Considering tunneling potentials $V_t(phi)$ that go from the false vacuum $phi_+$ to some $phi_0$ on the stable basin of the scalar potential $V(phi)$, the tunneling action is the minimum of the functional $S_E[V_t]=6 pi^2m_P^4int_{phi_+}^{phi_0}(D+V_t)^2/(V_t^2D)dphi $, where $Dequiv [(V_t)^2+6(V-V_t)V_t/m_P^2]^{1/2}$, $V_t=dV_t/dphi$ and $m_P$ is the reduced Planck mass. This one-line simple result applies equally to AdS, Minkowski or dS vacua decays and reproduces the Hawking-Moss action in the appropriate cases. This formalism provides new handles for the theoretical understanding of different features of vacuum decay in the presence of gravity.
An alternative approach to the calculation of tunneling actions, that control the exponential suppression of the decay of metastable phases, is presented. The new method circumvents the use of bounces in Euclidean space by introducing an auxiliary fu
We take a closer and new look at the effects of tidal forces on the free fall of a quantum particle inside a spherically symmetric gravitational field. We derive the corresponding Schrodinger equation for the particle by starting from the fully relat
Many models of physics beyond the Standard Model predict a strong first-order phase transition (SFOPT) in the early Universe that leads to observable gravitational waves (GWs). In this paper, we propose a novel method for presenting and comparing the
The apparent unification of gauge couplings around 10^16 GeV is one of the strong arguments in favor of Supersymmetric extensions of the Standard Model (SM). In this contribution a new analysis, using the latest experimental data, is performed. The s
A significant number of high power proton beams are available or will go online in the near future. This provides exciting opportunities for new fixed target experiments and the search for new physics in particular. In this note we will survey these