ﻻ يوجد ملخص باللغة العربية
This paper describes the participation of UvA.ILPS group at the TREC CAsT 2020 track. Our passage retrieval pipeline consists of (i) an initial retrieval module that uses BM25, and (ii) a re-ranking module that combines the score of a BERT ranking model with the score of a machine comprehension model adjusted for passage retrieval. An important challenge in conversational passage retrieval is that queries are often under-specified. Thus, we perform query resolution, that is, add missing context from the conversation history to the current turn query using QuReTeC, a term classification query resolution model. We show that our best automatic and manual runs outperform the corresponding median runs by a large margin.
Conversational passage retrieval relies on question rewriting to modify the original question so that it no longer depends on the conversation history. Several methods for question rewriting have recently been proposed, but they were compared under d
Recently, dense passage retrieval has become a mainstream approach to finding relevant information in various natural language processing tasks. A number of studies have been devoted to improving the widely adopted dual-encoder architecture. However,
Typically, Open Information Extraction (OpenIE) focuses on extracting triples, representing a subject, a relation, and the object of the relation. However, most of the existing techniques are based on a predefined set of relations in each domain whic
Recent studies on Question Answering (QA) and Conversational QA (ConvQA) emphasize the role of retrieval: a system first retrieves evidence from a large collection and then extracts answers. This open-retrieval ConvQA setting typically assumes that e
The Transformer-Kernel (TK) model has demonstrated strong reranking performance on the TREC Deep Learning benchmark---and can be considered to be an efficient (but slightly less effective) alternative to BERT-based ranking models. In this work, we ex