ﻻ يوجد ملخص باللغة العربية
The Transformer-Kernel (TK) model has demonstrated strong reranking performance on the TREC Deep Learning benchmark---and can be considered to be an efficient (but slightly less effective) alternative to BERT-based ranking models. In this work, we extend the TK architecture to the full retrieval setting by incorporating the query term independence assumption. Furthermore, to reduce the memory complexity of the Transformer layers with respect to the input sequence length, we propose a new Conformer layer. We show that the Conformers GPU memory requirement scales linearly with input sequence length, making it a more viable option when ranking long documents. Finally, we demonstrate that incorporating explicit term matching signal into the model can be particularly useful in the full retrieval setting. We present preliminary results from our work in this paper.
We benchmark Conformer-Kernel models under the strict blind evaluation setting of the TREC 2020 Deep Learning track. In particular, we study the impact of incorporating: (i) Explicit term matching to complement matching based on learned representatio
The Transformer-Kernel (TK) model has demonstrated strong reranking performance on the TREC Deep Learning benchmark -- and can be considered to be an efficient (but slightly less effective) alternative to other Transformer-based architectures that em
Recently, the retrieval models based on dense representations have been gradually applied in the first stage of the document retrieval tasks, showing better performance than traditional sparse vector space models. To obtain high efficiency, the basic
Complex deep learning models now achieve state of the art performance for many document retrieval tasks. The best models process the query or claim jointly with the document. However for fast scalable search it is desirable to have document embedding
In this paper, we study jointly query reformulation and document relevance estimation, the two essential aspects of information retrieval (IR). Their interactions are modelled as a two-player strategic game: one player, a query formulator, taking act