ﻻ يوجد ملخص باللغة العربية
Conversational passage retrieval relies on question rewriting to modify the original question so that it no longer depends on the conversation history. Several methods for question rewriting have recently been proposed, but they were compared under different retrieval pipelines. We bridge this gap by thoroughly evaluating those question rewriting methods on the TREC CAsT 2019 and 2020 datasets under the same retrieval pipeline. We analyze the effect of different types of question rewriting methods on retrieval performance and show that by combining question rewriting methods of different types we can achieve state-of-the-art performance on both datasets.
We introduce a new dataset for Question Rewriting in Conversational Context (QReCC), which contains 14K conversations with 80K question-answer pairs. The task in QReCC is to find answers to conversational questions within a collection of 10M web page
Recent studies on Question Answering (QA) and Conversational QA (ConvQA) emphasize the role of retrieval: a system first retrieves evidence from a large collection and then extracts answers. This open-retrieval ConvQA setting typically assumes that e
This paper describes the participation of UvA.ILPS group at the TREC CAsT 2020 track. Our passage retrieval pipeline consists of (i) an initial retrieval module that uses BM25, and (ii) a re-ranking module that combines the score of a BERT ranking mo
In this work, we address multi-modal information needs that contain text questions and images by focusing on passage retrieval for outside-knowledge visual question answering. This task requires access to outside knowledge, which in our case we defin
We analyse the performance of passage retrieval models in the presence of complex (multi-hop) questions to provide a better understanding of how retrieval systems behave when multiple hops of reasoning are needed. In simple open-domain question answe