ﻻ يوجد ملخص باللغة العربية
Gas-rich circumstellar disks are the cradles of planet formation. As such, their evolution will strongly influence the resulting planet population. In the ESO DESTINYS large program, we study these disks within the first 10 Myr of their development with near-infrared scattered light imaging. Here we present VLT/SPHERE polarimetric observations of the nearby class II system SU Aur in which we resolve the disk down to scales of ~7 au. In addition to the new SPHERE observations, we utilize VLT/NACO, HST/STIS and ALMA archival data. The new SPHERE data show the disk around SU Aur and extended dust structures in unprecedented detail. We resolve several dust tails connected to the Keplerian disk. By comparison with ALMA data, we show that these dust tails represent material falling onto the disk. The disk itself shows an intricate spiral structure and a shadow lane, cast by an inner, misaligned disk component. Our observations suggest that SU Aur is undergoing late infall of material, which can explain the observed disk structures. SU Aur is the clearest observational example of this mechanism at work and demonstrates that late accretion events can still occur in the class II phase, thereby significantly affecting the evolution of circumstellar disks. Constraining the frequency of such events with additional observations will help determine whether this process is responsible for the spin-orbit misalignment in evolved exoplanet systems.
To understand the formation of planetary systems, one needs to understand the initial conditions of planet formation, i.e. the young gas-rich planet forming disks. Spatially resolved high-contrast observations are of particular interest, since substr
The disk around AB Aur was imaged and resolved at 24.6,$mu$m using the Cooled Mid-Infrared Camera and Spectrometer on the 8.2m Subaru Telescope. The gaussian full-width at half-maximum of the source size is estimated to be 90 $pm$ 6 AU, indicating th
We present new high-resolution ($sim$0farcs09) $H$-band imaging observations of the circumstellar disk around the T Tauri star SU Aur. Our observations with Subaru-HiCIAO have revealed the presence of scattered light as close as 0farcs15 ($sim$20 AU)
We report the ALMA Cycle 2 observations of the Class I binary protostellar system L1551 NE in the 0.9-mm continuum, C18O (3-2), 13CO (3-2), SO (7_8-6_7), and the CS (7-6) emission. At 0.18 (= 25 AU) resolution, ~4-times higher than that of our Cycle
Observations of protoplanetary disks around very low-mass stars and brown dwarfs remain challenging and little is known about their properties. The disk around CIDA1 ($sim$0.1-0.2$M_odot$) is one of the very few known disks that host a large cavity (