ﻻ يوجد ملخص باللغة العربية
We present new high-resolution ($sim$0farcs09) $H$-band imaging observations of the circumstellar disk around the T Tauri star SU Aur. Our observations with Subaru-HiCIAO have revealed the presence of scattered light as close as 0farcs15 ($sim$20 AU) to the star. Within our image, we identify bright emission associated with a disk with a minimum radius of $sim$90 AU, an inclination of $sim$35degr from the plane of the sky, and an approximate P.A. of 15degr for the major axis. We find a brightness asymmetry between the northern and southern sides of the disk due to a non-axisymmetric disk structure. We also identify a pair of asymmetric tail structures extending east and west from the disk. The western tail extends at least 2farcs5 (350 AU) from the star, and is probably associated with a reflection nebula previously observed at optical and near-IR wavelengths. The eastern tail extends at least 1arcsec (140 AU) at the present signal-to-noise. These tails are likely due to an encounter with an unseen brown dwarf, but our results do not exclude the explanation that these tails are outflow cavities or jets.
We analyzed the young (2.8-Myr-old) binary system FS Tau A using near-infrared (H-band) high-contrast polarimetry data from Subaru/HiCIAO and sub-millimeter CO (J=2-1) line emission data from ALMA. Both the near-infrared and sub-millimeter observatio
We present near-infrared coronagraphic imaging polarimetry of RY Tau. The scattered light in the circumstellar environment was imaged at H-band at a high resolution (~0.05) for the first time, using Subaru-HiCIAO. The observed polarized intensity (PI
We present high-contrast H-band polarized intensity (PI) images of the transitional disk around the young solar-like star GM Aur. The near-infrared direct imaging of the disk was derived by polarimetric differential imaging using the Subaru 8.2-m Tel
We present H-band polarimetric imagery of UX Tau A taken with HiCIAO/AO188 on the Subaru Telescope. UX Tau A has been classified as a pre-transitional disk object, with a gap structure separating its inner and outer disks. Our imagery taken with the
The SR24 multi-star system hosts both circumprimary and circumsecondary disks, which are strongly misaligned from each other. The circumsecondary disk is circumbinary in nature. Interestingly, both disks are interacting, and they possibly rotate in o