ترغب بنشر مسار تعليمي؟ اضغط هنا

Pre-transitional disk nature of the AB Aur disk

228   0   0.0 ( 0 )
 نشر من قبل Mitsuhiko Honda
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The disk around AB Aur was imaged and resolved at 24.6,$mu$m using the Cooled Mid-Infrared Camera and Spectrometer on the 8.2m Subaru Telescope. The gaussian full-width at half-maximum of the source size is estimated to be 90 $pm$ 6 AU, indicating that the disk extends further out at 24.6,$mu$m than at shorter wavelengths. In order to interpret the extended 24.6,$mu$m image, we consider a disk with a reduced surface density within a boundary radius $R_c$, which is motivated by radio observations that suggest a reduced inner region within about 100 AU from the star. Introducing the surface density reduction factor $f_c$ for the inner disk, we determine that the best match with the observed radial intensity profile at 24.6,$mu$m is achieved with $R_c$=88 AU and $f_c$=0.01. We suggest that the extended emission at 24.6,$mu$m is due to the enhanced emission from a wall-like structure at the boundary radius (the inner edge of the outer disk), which is caused by a jump in the surface density at $R_c$. Such reduced inner disk and geometrically thick outer disk structure can also explain the more point-like nature at shorter wavelengths. We also note that this disk geometry is qualitatively similar to a pre-transitional disk, suggesting that the AB Aur disk is in a pre-transitional disk phase.



قيم البحث

اقرأ أيضاً

We have imaged GM Aur with HST, detected its disk in scattered light at 1400A and 1650A, and compared these with observations at 3300A, 5550A, 1.1 microns, and 1.6 microns. The scattered light increases at shorter wavelengths. The radial surface brig htness profile at 3300A shows no evidence of the 24AU radius cavity that has been previously observed in sub-mm observations. Comparison with dust grain opacity models indicates the surface of the entire disk is populated with sub-micron grains. We have compiled an SED from 0.1 microns to 1 mm, and used it to constrain a model of the star+disk system that includes the sub-mm cavity using the Monte Carlo Radiative Transfer code by Barbara Whitney. The best-fit model image indicates that the cavity should be detectable in the F330W bandpass if the cavity has been cleared of both large and small dust grains, but we do not detect it. The lack of an observed cavity can be explained by the presence of sub-microns grains interior to the sub-mm cavity wall. We suggest one explanation for this which could be due to a planet of mass <9 Jupiter masses interior to 24 AU. A unique cylindrical structure is detected in the FUV data from the Advanced Camera for Surveys/Solar Blind Channel. It is aligned along the system semi-minor axis, but does not resemble an accretion-driven jet. The structure is limb-brightened and extends 190 +/- 35 AU above the disk midplane. The inner radius of the limb-brightening is 40 +/- 10 AU, just beyond the sub-millimeter cavity wall.
We analyze 3 epochs of ultraviolet (UV), optical and near-infrared (NIR) observations of the Taurus transitional disk GM Aur using the Hubble Space Telescope Imaging Spectrograph (STIS) and the Infrared Telescope Facility SpeX spectrograph. Observati ons were separated by one week and 3 months in order to study variability over multiple timescales. We calculate accretion rates for each epoch of observations using the STIS spectra and find that those separated by one week had similar accretion rates (~1E-8 solar masses/yr) while the epoch obtained 3 months later had a substantially lower accretion rate (~4E-9 solar masses/yr). We find that the decline in accretion rate is caused by lower densities of material in the accretion flows, as opposed to a lower surface coverage of the accretion columns. During the low accretion rate epoch we also observe lower fluxes at both far UV (FUV) and IR wavelengths, which trace molecular gas and dust in the disk, respectively. We find that this can be explained by a lower dust and gas mass in the inner disk. We attribute the observed variability to inhomogeneities in the inner disk, near the corotation radius, where gas and dust may co-exist near the footprints of the magnetospheric flows. These FUV--NIR data offer a new perspective on the structure of the inner disk, the stellar magnetosphere, and their interaction.
Very few molecular species have been detected in circumstellar disks surrounding young stellar objects. We are carrying out an observational study of the chemistry of circumstellar disks surrounding T Tauri and Herbig Ae stars. First results of this study are presented in this note. We used the EMIR receivers recently installed at the IRAM 30m telescope to carry a sensitive search for molecular lines in the disks surrounding AB Aur, DM Tau, and LkCa 15. We detected lines of the molecules HCO+, CN, H2CO, SO, CS, and HCN toward AB Aur. In addition, we tentatively detected DCO+ and H2S lines. The line profiles suggest that the CN, HCN, H2CO, CS and SO lines arise in the disk. This makes it the first detection of SO in a circumstellar disk. We have unsuccessfully searched for SO toward DM Tau and LkCa 15, and for c-C3H2 toward AB Aur, DM Tau, and LkCa 15. Our upper limits show that contrary to all the molecular species observed so far, SO is not as abundant in DM Tau as it is in AB Aur. Our results demonstrate that the disk associated with AB Aur is rich in molecular species. Our chemical model shows that the detection of SO is consistent with that expected from a very young disk where the molecular adsorption onto grains does not yet dominate the chemistry.
Resolved submillimeter imaging of transitional disks is increasingly revealing the complexity of disk structure. Here we present the first high-resolution submillimeter image of a recently identified transitional disk around IRAS 04125+2902 in the Ta urus star-forming region. We measure an inner disk hole of ~20 AU around IRAS 04125+2902 by simultaneously modeling new 880 micron Submillimeter Array (SMA) data along with an existing spectral energy distribution supplemented by new Discovery Channel Telescope (DCT) photometry. We also constrain the outer radius of the dust disk in IRAS~04125+2902 to ~50-60 AU. Such a small dust disk could be attributed to initial formation conditions, outward truncation by an unseen companion, or dust evolution in the disk. Notably, the dust distribution of IRAS 04125+2902 resembles a narrow ring (delta R ~ 35 AU) composed of large dust grains at the location of the disk wall. Such narrow dust rings are also seen in other transitional disks and may be evidence of dust trapping in pressure bumps, possibly produced by planetary companions. More sensitive submillimeter observations of the gas are necessary to further probe the physical mechanisms at work in shaping the spatial distribution of large dust in this disk. Interestingly, the IRAS 04125+2902 disk is significantly fainter than other transitional disks that have been resolved at submillimeter wavelengths, hinting that more objects with large disk holes may exist at the faint end of the submillimeter luminosity distribution that await detection with more sensitive imaging telescopes.
We present high-contrast H-band polarized intensity (PI) images of the transitional disk around the young solar-like star GM Aur. The near-infrared direct imaging of the disk was derived by polarimetric differential imaging using the Subaru 8.2-m Tel escope and HiCIAO. An angular resolution and an inner working angle of 0.07 and r~0.05, respectively, were obtained. We clearly resolved a large inner cavity, with a measured radius of 18+/-2 au, which is smaller than that of a submillimeter interferometric image (28 au). This discrepancy in the cavity radii at near-infrared and submillimeter wavelengths may be caused by a 3-4M_Jup planet about 20 au away from the star, near the edge of the cavity. The presence of a near-infrared inner is a strong constraint on hypotheses for inner cavity formation in a transitional disk. A dust filtration mechanism has been proposed to explain the large cavity in the submillimeter image, but our results suggest that this mechanism must be combined with an additional process. We found that the PI slope of the outer disk is significantly different from the intensity slope obtained from HST/NICMOS, and this difference may indicate the grain growth process in the disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا