ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the imaging problem of terahertz (THz) tomography, in particular as it appears in non-destructive testing. We derive a nonlinear mathematical model describing a full THz tomography experiment, and consider linear approximations connecting THz tomography with standard computerized tomography and the Radon transform. Based on the derived models we propose different reconstruction approaches for solving the THz tomography problem, which we then compare on experimental data obtained from THz measurements of a plastic sample.
A new approach for image reconstruction in THz computed tomography (THz-CT) is presented. Based on a geometrical optics model containing the THz signal amplitude and phase, a novel algorithm for extracting an average phase from the measured THz signa
We introduce a novel, computationally inexpensive approach for imaging with an active array of sensors, which probe an unknown medium with a pulse and measure the resulting waves. The imaging function uses a data driven estimate of the internal wave
We consider the inverse problem of estimating the spatially varying pulse wave velocity in blood vessels in the brain from dynamic MRI data, as it appears in the recently proposed imaging technique of Magnetic Resonance Advection Imaging (MRAI). The
In this work, by introducing the seismic impedance tensor we propose a new Rayleigh wave dispersion function in a homogeneous and layered medium of the Earth, which provides an efficient way to compute the dispersion curve -- a relation between the f
This paper proposes, for wave propagating in a globally perturbed half plane with a perfectly conducting step-like surface, a sharp Sommerfeld radiation condition (SRC) for the first time, an analytic formula of the far-field pattern, and a high-accu