ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical Solver for the Boltzmann Equation With Self-Adaptive Collision Operators

76   0   0.0 ( 0 )
 نشر من قبل Zhenning Cai
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We solve the Boltzmann equation whose collision term is modeled by the hybridization of the binary collision and the BGK approximation. The parameter controlling the ratio of these two collision mechanisms is selected adaptively on every grid cell at every time step. This self-adaptation is based on a heuristic error indicator describing the difference between the model collision term and the original binary collision term. The indicator is derived by controlling the quadratic terms in the modeling error with linear operators. Our numerical experiments show that such error indicator is effective and computationally affordable.



قيم البحث

اقرأ أيضاً

This work further improves the pseudo-transient approach for the Poisson Boltzmann equation (PBE) in the electrostatic analysis of solvated biomolecules. The numerical solution of the nonlinear PBE is known to involve many difficulties, such as expon ential nonlinear term, strong singularity by the source terms, and complex dielectric interface. Recently, a pseudo-time ghost-fluid method (GFM) has been developed in [S. Ahmed Ullah and S. Zhao, Applied Mathematics and Computation, 380, 125267, (2020)], by analytically handling both nonlinearity and singular sources. The GFM interface treatment not only captures the discontinuity in the regularized potential and its flux across the molecular surface, but also guarantees the stability and efficiency of the time integration. However, the molecular surface definition based on the MSMS package is known to induce instability in some cases, and a nontrivial Lagrangian-to-Eulerian conversion is indispensable for the GFM finite difference discretization. In this paper, an Eulerian Solvent Excluded Surface (ESES) is implemented to replace the MSMS for defining the dielectric interface. The electrostatic analysis shows that the ESES free energy is more accurate than that of the MSMS, while being free of instability issues. Moreover, this work explores, for the first time in the PBE literature, adaptive time integration techniques for the pseudo-transient simulations. A major finding is that the time increment $Delta t$ should become smaller as the time increases, in order to maintain the temporal accuracy. This is opposite to the common practice for the steady state convergence, and is believed to be due to the PBE nonlinearity and its time splitting treatment. Effective adaptive schemes have been constructed so that the pseudo-time GFM methods become more efficient than the constant $Delta t$ ones.
The Poisson-Boltzmann equation is a widely used model to study the electrostatics in molecular solvation. Its numerical solution using a boundary integral formulation requires a mesh on the molecular surface only, yielding accurate representations of the solute, which is usually a complicated geometry. Here, we utilize adjoint-based analyses to form two goal-oriented error estimates that allows us to determine the contribution of each discretization element (panel) to the numerical error in the solvation free energy. This information is useful to identify high-error panels to then refine them adaptively to find optimal surface meshes. We present results for spheres and real molecular geometries, and see that elements with large error tend to be in regions where there is a high electrostatic potential. We also find that even though both estimates predict different total errors, they have similar performance as part of an adaptive mesh refinement scheme. Our test cases suggest that the adaptive mesh refinement scheme is very effective, as we are able to reduce the error one order of magnitude by increasing the mesh size less than 20%. This result sets the basis towards efficient automatic mesh refinement schemes that produce optimal meshes for solvation energy calculations.
In the present work we show some results on the effect of the Smagorinsky model on the stability of the associated perturbation equation. We show that in the presence of a spectral gap, such that the flow can be decomposed in a large scale with moder ate gradient and a small amplitude fine scale with arbitratry gradient, the Smagorinsky model admits stability estimates for perturbations, with exponential growth depending only on the large scale gradient. We then show in the context of stabilized finite element methods that the same result carries over to the approximation and that in this context, for suitably chosen finite element spaces the Smagorinsky model acts as a stabilizer yielding close to optimal error estimates in the $L^2$-norm for smooth flows in the pre-asymptotic high Reynolds number regime.
Global spectral analysis (GSA) is used as a tool to test the accuracy of numerical methods with the help of canonical problems of convection and convection-diffusion equation which admit exact solutions. Similarly, events in turbulent flows computed by direct numerical simulation (DNS) are often calibrated with theoretical results of homogeneous isotropic turbulence due to Kolmogorov, as given in Turbulence -U. Frisch, Cambridge Univ. Press, UK (1995). However, numerical methods for the simulation of this problem are not calibrated, as by using GSA of convection and/or convection-diffusion equation. This is with the exception in A critical assessment of simulations for transitional and turbulence flows-Sengupta, T.K., In Proc. of IUTAM Symp. on Advances in Computation, Modeling and Control of Transitional and Turbulent Flows, pp 491-532, World Sci. Publ. Co. Pte. Ltd., Singapore (2016), where such a calibration has been advocated with the help of convection equation. For turbulent flows, an extreme event is characterized by the presence of length scales smaller than the Kolmogorov length scale, a heuristic limit for the largest wavenumber present without being converted to heat. With growing computer power, recently many simulations have been reported using a pseudo-spectral method, with spatial discretization performed in Fourier spectral space and a two-stage, Runge-Kutta (RK2) method for time discretization. But no analyses are reported to ensure high accuracy of such simulations. Here, an analysis is reported for few multi-stage Runge-Kutta methods in the Fourier spectral framework for convection and convection-diffusion equations. We identify the major source of error for the RK2-Fourier spectral method using GSA and also show how to avoid this error and specify numerical parameters for achieving highest accuracy possible to capture extreme events in turbulent flows.
We propose an adaptive multigrid preconditioning technology for solving linear systems arising from Discontinuous Petrov-Galerkin (DPG) discretizations. Unlike standard multigrid techniques, this preconditioner involves only trace spaces defined on t he mesh skeleton, and it is suitable for adaptive hp-meshes. The key point of the construction is the integration of the iterative solver with a fully automatic and reliable mesh refinement process provided by the DPG technology. The efficacy of the solution technique is showcased with numerous examples of linear acoustics and electromagnetic simulations, including simulations in the high-frequency regime, problems which otherwise would be intractable. Finally, we analyze the one-level preconditioner (smoother) for uniform meshes and we demonstrate that theoretical estimates of the condition number of the preconditioned linear system can be derived based on well established theory for self-adjoint positive definite operators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا