ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of pseudo-spectral methods used for numerical simulation of turbulence

117   0   0.0 ( 0 )
 نشر من قبل Suman Vajjala Mr
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Global spectral analysis (GSA) is used as a tool to test the accuracy of numerical methods with the help of canonical problems of convection and convection-diffusion equation which admit exact solutions. Similarly, events in turbulent flows computed by direct numerical simulation (DNS) are often calibrated with theoretical results of homogeneous isotropic turbulence due to Kolmogorov, as given in Turbulence -U. Frisch, Cambridge Univ. Press, UK (1995). However, numerical methods for the simulation of this problem are not calibrated, as by using GSA of convection and/or convection-diffusion equation. This is with the exception in A critical assessment of simulations for transitional and turbulence flows-Sengupta, T.K., In Proc. of IUTAM Symp. on Advances in Computation, Modeling and Control of Transitional and Turbulent Flows, pp 491-532, World Sci. Publ. Co. Pte. Ltd., Singapore (2016), where such a calibration has been advocated with the help of convection equation. For turbulent flows, an extreme event is characterized by the presence of length scales smaller than the Kolmogorov length scale, a heuristic limit for the largest wavenumber present without being converted to heat. With growing computer power, recently many simulations have been reported using a pseudo-spectral method, with spatial discretization performed in Fourier spectral space and a two-stage, Runge-Kutta (RK2) method for time discretization. But no analyses are reported to ensure high accuracy of such simulations. Here, an analysis is reported for few multi-stage Runge-Kutta methods in the Fourier spectral framework for convection and convection-diffusion equations. We identify the major source of error for the RK2-Fourier spectral method using GSA and also show how to avoid this error and specify numerical parameters for achieving highest accuracy possible to capture extreme events in turbulent flows.

قيم البحث

اقرأ أيضاً

In the present work we show some results on the effect of the Smagorinsky model on the stability of the associated perturbation equation. We show that in the presence of a spectral gap, such that the flow can be decomposed in a large scale with moder ate gradient and a small amplitude fine scale with arbitratry gradient, the Smagorinsky model admits stability estimates for perturbations, with exponential growth depending only on the large scale gradient. We then show in the context of stabilized finite element methods that the same result carries over to the approximation and that in this context, for suitably chosen finite element spaces the Smagorinsky model acts as a stabilizer yielding close to optimal error estimates in the $L^2$-norm for smooth flows in the pre-asymptotic high Reynolds number regime.
A novel semi-Lagrangian method is introduced to solve numerically the Euler equation for ideal incompressible flow in arbitrary space dimension. It exploits the time-analyticity of fluid particle trajectories and requires, in principle, only limited spatial smoothness of the initial data. Efficient generation of high-order time-Taylor coefficients is made possible by a recurrence relation that follows from the Cauchy invariants formulation of the Euler equation (Zheligovsky & Frisch, J. Fluid Mech. 2014, 749, 404-430). Truncated time-Taylor series of very high order allow the use of time steps vastly exceeding the Courant-Friedrichs-Lewy limit, without compromising the accuracy of the solution. Tests performed on the two-dimensional Euler equation indicate that the Cauchy-Lagrangian method is more - and occasionally much more - efficient and less prone to instability than Eulerian Runge-Kutta methods, and less prone to rapid growth of rounding errors than the high-order Eulerian time-Taylor algorithm. We also develop tools of analysis adapted to the Cauchy-Lagrangian method, such as the monitoring of the radius of convergence of the time-Taylor series. Certain other fluid equations can be handled similarly.
75 - Zhenning Cai , Yanli Wang 2021
We solve the Boltzmann equation whose collision term is modeled by the hybridization of the binary collision and the BGK approximation. The parameter controlling the ratio of these two collision mechanisms is selected adaptively on every grid cell at every time step. This self-adaptation is based on a heuristic error indicator describing the difference between the model collision term and the original binary collision term. The indicator is derived by controlling the quadratic terms in the modeling error with linear operators. Our numerical experiments show that such error indicator is effective and computationally affordable.
The stable operation of gas networks is an important optimization target. While for this task commonly finite volume methods are used, we introduce a new finite difference approach. With a summation by part formulation for the spatial discretization, we get well-defined fluxes between the pipes. This allows a simple and explicit formulation of the coupling conditions at the node. From that, we derive the adjoint equations for the network simply and transparently. The resulting direct and adjoint equations are numerically efficient and easy to implement. The approach is demonstrated by the optimization of two sample gas networks.
In marine offshore engineering, cost-efficient simulation of unsteady water waves and their nonlinear interaction with bodies are important to address a broad range of engineering applications at increasing fidelity and scale. We consider a fully non linear potential flow (FNPF) model discretized using a Galerkin spectral element method to serve as a basis for handling both wave propagation and wave-body interaction with high computational efficiency within a single modellingapproach. We design and propose an efficientO(n)-scalable computational procedure based on geometric p-multigrid for solving the Laplace problem in the numerical scheme. The fluid volume and the geometric features of complex bodies is represented accurately using high-order polynomial basis functions and unstructured meshes with curvilinear prism elements. The new p-multigrid spectralelement model can take advantage of the high-order polynomial basis and thereby avoid generating a hierarchy of geometric meshes with changing number of elements as required in geometric h-multigrid approaches. We provide numerical benchmarks for the algorithmic and numerical efficiency of the iterative geometric p-multigrid solver. Results of numerical experiments are presented for wave propagation and for wave-body interaction in an advanced case for focusing design waves interacting with a FPSO. Our study shows, that the use of iterative geometric p-multigrid methods for theLaplace problem can significantly improve run-time efficiency of FNPF simulators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا