ﻻ يوجد ملخص باللغة العربية
The antiferromagnetic to ferromagnetic transition occurring above room temperature in FeRh is attracting interest for applications in spintronics, with perspectives for robust and untraceable data storage. Here, we show that FeRh films can be grown on a flexible metallic substrate (tape shaped), coated with a textured rock-salt MgO layer, suitable for large scale applications. The FeRh tape displays a sharp antiferromagnetic to ferromagnetic transition at about 90 oC. Its magnetic properties are preserved by bending (radii of 300 mm), and their anisotropic magnetoresistance (up to 0.05 %) is used to illustrate data writing/reading capability.
We show experimentally through time-resolved conductance measurements that magnetization reversal through domain wall motion in sub-100 nm diameter magnetic tunnel junctions is dominated by two distinct stochastic effects. The first involves the incu
The antiferromagnetic to ferromagnetic phase transition in B2-ordered FeRh is imaged in laterally confined nanopatterned islands using photoemission electron microscopy with x-ray magnetic circular dichroism contrast. The resulting magnetic images di
Using a double-pump pulse approach and laser-induced THz emission as an ultrafast amperemeter and magnetometer, we show that a femtosecond laser pulse generates ferromagnetic nuclei in a FeRh/Pt bilayer, i.e. these nuclei acquire a net magnetization
The antiferromagnetic (AFM) to ferromagnetic (FM) first order phase transition of an epitaxial FeRh thin-film has been studied with x-ray magnetic circular dichroism using photoemission electron microscopy. The FM phase is magnetized in-plane due to
Using an electric field instead of an electric current (or a magnetic field) to tailor the electronic properties of magnetic materials is promising for realizing ultralow energy-consuming memory devices because of the suppression of Joule heating, es