ترغب بنشر مسار تعليمي؟ اضغط هنا

Active Privacy-utility Trade-off Against a Hypothesis Testing Adversary

272   0   0.0 ( 0 )
 نشر من قبل Ecenaz Erdemir
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a user releasing her data containing some personal information in return of a service. We model users personal information as two correlated random variables, one of them, called the secret variable, is to be kept private, while the other, called the useful variable, is to be disclosed for utility. We consider active sequential data release, where at each time step the user chooses from among a finite set of release mechanisms, each revealing some information about the users personal information, i.e., the true hypotheses, albeit with different statistics. The user manages data release in an online fashion such that maximum amount of information is revealed about the latent useful variable, while the confidence for the sensitive variable is kept below a predefined level. For the utility, we consider both the probability of correct detection of the useful variable and the mutual information (MI) between the useful variable and released data. We formulate both problems as a Markov decision process (MDP), and numerically solve them by advantage actor-critic (A2C) deep reinforcement learning (RL).



قيم البحث

اقرأ أيضاً

265 - Xiaoming Duan , Zhe Xu , Rui Yan 2021
We study privacy-utility trade-offs where users share privacy-correlated useful information with a service provider to obtain some utility. The service provider is adversarial in the sense that it can infer the users private information based on the shared useful information. To minimize the privacy leakage while maintaining a desired level of utility, the users carefully perturb the useful information via a probabilistic privacy mapping before sharing it. We focus on the setting in which the adversary attempting an inference attack on the users privacy has potentially biased information about the statistical correlation between the private and useful variables. This information asymmetry between the users and the limited adversary leads to better privacy guarantees than the case of the omniscient adversary under the same utility requirement. We first identify assumptions on the adversarys information so that the inference costs are well-defined and finite. Then, we characterize the impact of the information asymmetry and show that it increases the inference costs for the adversary. We further formulate the design of the privacy mapping against a limited adversary using a difference of convex functions program and solve it via the concave-convex procedure. When the adversarys information is not precisely available, we adopt a Bayesian view and represent the adversarys information by a probability distribution. In this case, the expected cost for the adversary does not admit a closed-form expression, and we establish and maximize a lower bound of the expected cost. We provide a numerical example regarding a census data set to illustrate the theoretical results.
Information theory has been very successful in obtaining performance limits for various problems such as communication, compression and hypothesis testing. Likewise, stochastic control theory provides a characterization of optimal policies for Partia lly Observable Markov Decision Processes (POMDPs) using dynamic programming. However, finding optimal policies for these problems is computationally hard in general and thus, heuristic solutions are employed in practice. Deep learning can be used as a tool for designing better heuristics in such problems. In this paper, the problem of active sequential hypothesis testing is considered. The goal is to design a policy that can reliably infer the true hypothesis using as few samples as possible by adaptively selecting appropriate queries. This problem can be modeled as a POMDP and bounds on its value function exist in literature. However, optimal policies have not been identified and various heuristics are used. In this paper, two new heuristics are proposed: one based on deep reinforcement learning and another based on a KL-divergence zero-sum game. These heuristics are compared with state-of-the-art solutions and it is demonstrated using numerical experiments that the proposed heuristics can achieve significantly better performance than existing methods in some scenarios.
How to contain the spread of the COVID-19 virus is a major concern for most countries. As the situation continues to change, various countries are making efforts to reopen their economies by lifting some restrictions and enforcing new measures to pre vent the spread. In this work, we review some approaches that have been adopted to contain the COVID-19 virus such as contact tracing, clusters identification, movement restrictions, and status validation. Specifically, we classify available techniques based on some characteristics such as technology, architecture, trade-offs (privacy vs utility), and the phase of adoption. We present a novel approach for evaluating privacy using both qualitative and quantitative measures of privacy-utility assessment of contact tracing applications. In this new method, we classify utility at three (3) distinct levels: no privacy, 100% privacy, and at k where k is set by the system providing the utility or privacy.
A trade-off between accuracy and fairness is almost taken as a given in the existing literature on fairness in machine learning. Yet, it is not preordained that accuracy should decrease with increased fairness. Novel to this work, we examine fair cla ssification through the lens of mismatched hypothesis testing: trying to find a classifier that distinguishes between two ideal distributions when given two mismatched distributions that are biased. Using Chernoff information, a tool in information theory, we theoretically demonstrate that, contrary to popular belief, there always exist ideal distributions such that optimal fairness and accuracy (with respect to the ideal distributions) are achieved simultaneously: there is no trade-off. Moreover, the same classifier yields the lack of a trade-off with respect to ideal distributions while yielding a trade-off when accuracy is measured with respect to the given (possibly biased) dataset. To complement our main result, we formulate an optimization to find ideal distributions and derive fundamental limits to explain why a trade-off exists on the given biased dataset. We also derive conditions under which active data collection can alleviate the fairness-accuracy trade-off in the real world. Our results lead us to contend that it is problematic to measure accuracy with respect to data that reflects bias, and instead, we should be considering accuracy with respect to ideal, unbiased data.
We consider the problem of decentralized sequential active hypothesis testing (DSAHT), where two transmitting agents, each possessing a private message, are actively helping a third agent--and each other--to learn the message pair over a discrete mem oryless multiple access channel (DM-MAC). The third agent (receiver) observes the noisy channel output, which is also available to the transmitting agents via noiseless feedback. We formulate this problem as a decentralized dynamic team, show that optimal transmission policies have a time-invariant domain, and characterize the solution through a dynamic program. Several alternative formulations are discussed involving time-homogenous cost functions and/or variable-length codes, resulting in solutions described through fixed-point, Bellman-type equations. Subsequently, we make connections with the problem of simplifying the multi-letter capacity expressions for the noiseless feedback capacity of the DM-MAC. We show that restricting attention to distributions induced by optimal transmission schemes for the DSAHT problem, without loss of optimality, transforms the capacity expression, so that it can be thought of as the average reward received by an appropriately defined stochastic dynamical system with time-invariant state space.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا