ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantifying the Privacy-Utility Trade-offs in COVID-19 Contact Tracing Apps

69   0   0.0 ( 0 )
 نشر من قبل Patrick Ocheja
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

How to contain the spread of the COVID-19 virus is a major concern for most countries. As the situation continues to change, various countries are making efforts to reopen their economies by lifting some restrictions and enforcing new measures to prevent the spread. In this work, we review some approaches that have been adopted to contain the COVID-19 virus such as contact tracing, clusters identification, movement restrictions, and status validation. Specifically, we classify available techniques based on some characteristics such as technology, architecture, trade-offs (privacy vs utility), and the phase of adoption. We present a novel approach for evaluating privacy using both qualitative and quantitative measures of privacy-utility assessment of contact tracing applications. In this new method, we classify utility at three (3) distinct levels: no privacy, 100% privacy, and at k where k is set by the system providing the utility or privacy.



قيم البحث

اقرأ أيضاً

Contact tracing is an essential tool for public health officials and local communities to fight the spread of novel diseases, such as for the COVID-19 pandemic. The Singaporean government just released a mobile phone app, TraceTogether, that is desig ned to assist health officials in tracking down exposures after an infected individual is identified. However, there are important privacy implications of the existence of such tracking apps. Here, we analyze some of those implications and discuss ways of ameliorating the privacy concerns without decreasing usefulness to public health. We hope in writing this document to ensure that privacy is a central feature of conversations surrounding mobile contact tracing apps and to encourage community efforts to develop alternative effective solutions with stronger privacy protection for the users. Importantly, though we discuss potential modifications, this document is not meant as a formal research paper, but instead is a response to some of the privacy characteristics of direct contact tracing apps like TraceTogether and an early-stage Request for Comments to the community. Date written: 2020-03-24 Minor correction: 2020-03-30
Since the onset of the COVID-19s global spread we have been following the debate around contact tracing apps -- the tech-enabled response to the pandemic. As corporations, academics, governments, and civil society discuss the right way to implement t hese apps, we noticed recurring implicit assumptions. The proposed solutions are designed for a world where Internet access and smartphone ownership are a given, people are willing and able to install these apps, and those who receive notifications about potential exposure to the virus have access to testing and can isolate safely. In this work we challenge these assumptions. We not only show that there are not enough smartphones worldwide to reach required adoption thresholds but also highlight a broad lack of internet access, which affects certain groups more: the elderly, those with lower incomes, and those with limited ability to socially distance. Unfortunately, these are also the groups that are at the highest risks from COVID-19. We also report that the contact tracing apps that are already deployed on an opt-in basis show disappointing adoption levels. We warn about the potential consequences of over-extending the existing state and corporate surveillance powers. Finally, we describe a multitude of scenarios where contact tracing apps will not help regardless of access or policy. In this work we call for a comprehensive and equitable policy response that prioritizes the needs of the most vulnerable, protects human rights, and considers long term impact instead of focusing on technology-first fixes.
The recent outbreak of COVID-19 has taken the world by surprise, forcing lockdowns and straining public health care systems. COVID-19 is known to be a highly infectious virus, and infected individuals do not initially exhibit symptoms, while some rem ain asymptomatic. Thus, a non-negligible fraction of the population can, at any given time, be a hidden source of transmissions. In response, many governments have shown great interest in smartphone contact tracing apps that help automate the difficult task of tracing all recent contacts of newly identified infected individuals. However, tracing apps have generated much discussion around their key attributes, including system architecture, data management, privacy, security, proximity estimation, and attack vulnerability. In this article, we provide the first comprehensive review of these much-discussed tracing app attributes. We also present an overview of many proposed tracing app examples, some of which have been deployed countrywide, and discuss the concerns users have reported regarding their usage. We close by outlining potential research directions for next-generation app design, which would facilitate improved tracing and security performance, as well as wide adoption by the population at large.
Digital contact tracing is a public health intervention. It should be integrated with local health policy, provide rapid and accurate notifications to exposed individuals, and encourage high app uptake and adherence to quarantine. Real-time monitorin g and evaluation of effectiveness of app-based contact tracing is key for improvement and public trust.
Digital contact tracing apps for COVID, such as the one developed by Google and Apple, need to estimate the risk that a user was infected during a particular exposure, in order to decide whether to notify the user to take precautions, such as enterin g into quarantine, or requesting a test. Such risk score models contain numerous parameters that must be set by the public health authority. In this paper, we show how to automatically learn these parameters from data. Our method needs access to exposure and outcome data. Although this data is already being collected (in an aggregated, privacy-preserving way) by several health authorities, in this paper we limit ourselves to simulated data, so that we can systematically study the different factors that affect the feasibility of the approach. In particular, we show that the parameters become harder to estimate when there is more missing data (e.g., due to infections which were not recorded by the app), and when there is model misspecification. Nevertheless, the learning approach outperforms a strong manually designed baseline. Furthermore, the learning approach can adapt even when the risk factors of the disease change, e.g., due to the evolution of new variants, or the adoption of vaccines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا