ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory, preparation, properties and catalysis application in 2D Graphynes-Based Materials

55   0   0.0 ( 0 )
 نشر من قبل Jiayu Wu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Carbon has three hybridization forms of sp-, sp2- and sp3-, and the combination of different forms can obtain different kinds of carbon allotropes, such as diamond, carbon nanotubes, fullerene, graphynes (GYs) and graphdiyne (GDY). Among them, the GDY molecule is a single-layer two-dimensional (2D) planar structure material with highly -conjugation formed by sp- and sp2- hybridization. GDY has a carbon atom ring composed of benzene ring and acetylene, which makes GDY have a uniformly distributed pore structure. In addition, GDY planar material have some slight wrinkles, which makes GDY have better self-stability than other 2D planar materials. The excellent properties of GDY make it attract the attention of researcher. Therefore, GDY is widely used in chemical catalysis, electronics, communications, clean energy and composite materials. This paper summarizes the recent progress of GDY research, including structure, preparation, properties and application of GDY in the field of catalysts.



قيم البحث

اقرأ أيضاً

65 - Yang Li , Junhan Wu , Chunmei Li 2021
The family of graphynes, novel two-dimensional semiconductors with various and fascinating chemical and physical properties, has attracted great interest from both science and industry. Currently, the focus of graphynes is on graphdiyne, or graphyne- 2. In this work, we systematically study the effect of acetylene, i.e., carbon-carbon triple bond, links on the electronic and optical properties of a series of graphynes (graphyne-n, where n = 1-5, the number of acetylene bonds) using the ab initio calculations. We find an even-odd pattern, i.e., n = 1, 3, 5 and n = 2, 4 having different features, which has not be discovered in studying graphyne or graphdyine only. It is found that as the number of acetylene bonds increases, the electron effective mass increases continuously in the low energy range because of the flatter conduction band induced by the longer acetylene links. Meanwhile, longer acetylene links result in larger redshift of the imaginary part of the dielectric function, loss function, and extinction coefficient. In this work, we propose an effective method to tune and manipulate both the electronic and optical properties of graphynes for the applications in optoelectronic devices and photo-chemical catalysis.
Heterogeneous catalysis is an example of a complex materials function, governed by an intricate interplay of several processes, e.g., the different surface chemical reactions, and the dynamic re-structuring of the catalyst material at reaction condit ions. Modelling the full catalytic progression via first-principles statistical mechanics is impractical, if not impossible. Instead, we show here how a tailored artificial-intelligence approach can be applied, even to a small number of materials, to model catalysis and determine the key descriptive parameters (materials genes) reflecting the processes that trigger, facilitate, or hinder catalyst performance. We start from a consistent experimental set of clean data, containing nine vanadium-based oxidation catalysts. These materials were synthesized, fully characterized, and tested according to standardized protocols. By applying the symbolic-regression SISSO approach, we identify correlations between the few most relevant materials properties and their reactivity. This approach highlights the underlying physicochemical processes, and accelerates catalyst design.
The exceptional electronic, optical and chemical properties of two-dimensional materials strongly depend on the 3D atomic structure and crystal defects. Using Re-doped MoS2 as a model, here we develop scanning atomic electron tomography (sAET) to det ermine the 3D atomic positions and crystal defects such as dopants, vacancies and ripples with a precision down to 4 picometers. We measure the 3D bond distortion and local strain tensor induced by single dopants for the first time. By directly providing experimental 3D atomic coordinates to density functional theory (DFT), we obtain more truthful electronic band structures than those derived from conventional DFT calculations relying on relaxed 3D atomic models, which is confirmed by photoluminescence measurements. We anticipate that sAET is not only generally applicable to the determination of the 3D atomic coordinates of 2D materials, heterostructures and thin films, but also could transform ab initio calculations by using experimental 3D atomic coordinates as direct input to better predict and discover new physical, chemical and electronic properties.
We analyze the occurrence of in-plane anisotropy in the electronic, magnetic, elastic and transport properties of more than one thousand 2D materials from the C2DB database. We identify hundreds of anisotropic materials and classify them according to their point group symmetry and degree of anisotropy. A statistical analysis reveals that a lower point group symmetry and a larger amount of different elements in the structure favour all types of anisotropies, which could be relevant for future materials design approaches. Besides, we identify novel compounds, predicted to be easily exfoliable from a parent bulk compound, with anisotropies that largely outscore those of already known 2D materials. Our findings provide a comprehensive reference for future studies of anisotropic response in atomically-thin crystals and point to new previously unexplored materials for the next generation of anisotropic 2D devices.
The MechElastic Python package evaluates the mechanical and elastic properties of bulk and 2D materials using the elastic coefficient matrix ($C_{ij}$) obtained from any ab-initio density-functional theory (DFT) code. The current version of this pack age reads the output of VASP, ABINIT, and Quantum Espresso codes (but it can be easily generalized to any other DFT code) and performs the appropriate post-processing of elastic constants as per the requirement of the user. This program can also detect the input structures crystal symmetry and test the mechanical stability of all crystal classes using the Born-Huang criteria. Various useful material-specific properties such as elastic moduli, longitudinal and transverse elastic wave velocities, Debye temperature, elastic anisotropy, 2D layer modulus, hardness, Pughs ratio, Cauchys pressure, Kleinman parameter, and Lames coefficients, can be estimated using this program. Another existing feature of this program is to employ the ELATE package [J. Phys.: Condens. Matter 28, 275201 (2016)] and plot the spatial variation of several elastic properties such as Poissons ratio, linear compressibility, shear modulus, and Youngs modulus in three dimensions. Further, the MechElastic package can plot the equation of state (EOS) curves for energy and pressure for a variety of EOS models such as Murnaghan, Birch, Birch-Murnaghan, and Vinet, by reading the inputted energy/pressure versus volume data obtained via numerical calculations or experiments. This package is particularly useful for the high-throughput analysis of elastic and mechanical properties of materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا