ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational perturbations from NHEK to Kerr

149   0   0.0 ( 0 )
 نشر من قبل Alejandra Castro
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We revisit the spectrum of linear axisymmetric gravitational perturbations of the (near-)extreme Kerr black hole. Our aim is to characterise those perturbations that are responsible for the deviations away from extremality, and to contrast them with the linearized perturbations treated in the Newman-Penrose formalism. For the near horizon region of the (near-)extreme Kerr solution, i.e. the (near-)NHEK background, we provide a complete characterisation of axisymmetric modes. This involves an infinite tower of propagating modes together with the much subtler low-lying mode sectors that contain the deformations driving the black hole away from extremality. Our analysis includes their effects on the line element, their contributions to Iyer-Wald charges around the NHEK geometry, and how to reconstitute them as gravitational perturbations on Kerr. We present in detail how regularity conditions along the angular variables modify the dynamical properties of the low-lying sector, and in particular their role in the new developments of nearly-AdS$_2$ holography.



قيم البحث

اقرأ أيضاً

125 - Elena Giorgi 2020
We derive the equations governing the linear stability of Kerr-Newman spacetime to coupled electromagnetic-gravitational perturbations. The equations generalize the celebrated Teukolsky equation for curvature perturbations of Kerr, and the Regge-Whee ler equation for metric perturbations of Reissner-Nordstrom. Because of the apparent indissolubility of the coupling between the spin-1 and spin-2 fields, as put by Chandrasekhar, the stability of Kerr-Newman spacetime can not be obtained through standard decomposition in modes. Due to the impossibility to decouple the modes of the gravitational and electromagnetic fields, the equations governing the linear stability of Kerr-Newman have not been previously derived. Using a tensorial approach that was applied to Kerr, we produce a set of generalized Regge-Wheeler equations for perturbations of Kerr-Newman, which are suitable for the study of linearized stability by physical space methods. The physical space analysis overcomes the issue of coupling of spin-1 and spin-2 fields and represents the first step towards an analytical proof of the stability of the Kerr-Newman black hole.
We consider gravitational perturbations of 2D dilaton gravity systems and show that these can be recast into $Tbar{T}$-deformations (at least) under certain conditions, where $T$ means the energy-momentum tensor of the matter field coupled to a dilat on gravity. In particular, the class of theories under this condition includes a Jackiw-Teitelboim (JT) theory with a negative cosmological constant including conformal matter fields. This is a generalization of the preceding work on the flat-space JT gravity by S. Dubovsky, V. Gorbenko and M. Mirbabayi [arXiv:1706.06604].
We study gravitational perturbations around the near horizon geometry of the (near) extreme Kerr black hole. By considering a consistent truncation for the metric fluctuations, we obtain a solution to the linearized Einstein equations. The dynamics i s governed by two master fields which, in the context of the nAdS$_2$/nCFT$_1$ correspondence, are both irrelevant operators of conformal dimension $Delta=2$. These fields control the departure from extremality by breaking the conformal symmetry of the near horizon region. One of the master fields is tied to large diffeomorphisms of the near horizon, with its equations of motion compatible with a Schwarzian effective action. The other field is essential for a consistent description of the geometry away from the horizon.
We determine bounds on the curvature of local patches of spacetime from the requirement of intact long-range chiral symmetry. The bounds arise from a scale-dependent analysis of gravitational catalysis and its influence on the effective potential for the chiral order parameter, as induced by fermionic fluctuations on a curved spacetime with local hyperbolic properties. The bound is expressed in terms of the local curvature scalar measured in units of a gauge-invariant coarse-graining scale. We argue that any effective field theory of quantum gravity obeying this curvature bound is safe from chiral symmetry breaking through gravitational catalysis and thus compatible with the simultaneous existence of chiral fermions in the low-energy spectrum. With increasing number of dimensions, the curvature bound in terms of the hyperbolic scale parameter becomes stronger. Applying the curvature bound to the asymptotic safety scenario for quantum gravity in four spacetime dimensions translates into bounds on the matter content of particle physics models.
92 - Marco Astorino 2015
The tools of Kerr/CFT correspondence are applied to the Kerr black hole embedded in an axial external magnetic field. Its extremal near horizon geometry remains a warped and twisted product of $AdS_2times S^2$. The central charge of the Virasoro alge bra, generating the asymptotic symmetries of the near horizon geometry, is found. It is used to reproduce, via the Cardy formula, the Bekenstein-Hawking entropy of the magnetised Kerr black hole as the statistical microscopic entropy of a dual CFT. The presence of the background magnetic field makes available also a second dual CFT picture, based on the $U(1)$ electromagnetic symmetry, instead of the only rotational one of the standard non-magnetised Kerr spacetime. A Meissner-like effect, where at extremality the external magnetic field is expelled out of the black hole, allows us to infer the value of the mass for these magnetised extremal black holes. The generalisation to the CFT dual for the magnetised extreme Kerr-Newman black hole is also presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا