ﻻ يوجد ملخص باللغة العربية
We determine bounds on the curvature of local patches of spacetime from the requirement of intact long-range chiral symmetry. The bounds arise from a scale-dependent analysis of gravitational catalysis and its influence on the effective potential for the chiral order parameter, as induced by fermionic fluctuations on a curved spacetime with local hyperbolic properties. The bound is expressed in terms of the local curvature scalar measured in units of a gauge-invariant coarse-graining scale. We argue that any effective field theory of quantum gravity obeying this curvature bound is safe from chiral symmetry breaking through gravitational catalysis and thus compatible with the simultaneous existence of chiral fermions in the low-energy spectrum. With increasing number of dimensions, the curvature bound in terms of the hyperbolic scale parameter becomes stronger. Applying the curvature bound to the asymptotic safety scenario for quantum gravity in four spacetime dimensions translates into bounds on the matter content of particle physics models.
We establish a correspondence between perturbative classical gluon and gravitational radiation emitted by spinning sources, to linear order in spin. This is an extension of the non-spinning classical perturbative double copy and uses the same color-t
In recent work we showed that, for a class of conformal field theories (CFT) with Gauss-Bonnet gravity dual, the shear viscosity to entropy density ratio, $eta/s$, could violate the conjectured Kovtun-Starinets-Son viscosity bound, $eta/sgeq1/4pi$. I
We study compatibility of the Standard Model of particle physics and General Relativity by means of gravitational positivity bounds, which provide a necessary condition for a low-energy gravitational theory to be UV completable within the weakly coup
A classical upper bound for quantum entropy is identified and illustrated, $0leq S_q leq ln (e sigma^2 / 2hbar)$, involving the variance $sigma^2$ in phase space of the classical limit distribution of a given system. A fortiori, this further bounds t
We scrutinize the novel chiral transport phenomenon driven by spacetime torsion, namely the chiral torsional effect (CTE). We calculate the torsion-induced chiral currents with finite temperature, density and curvature in the most general torsional g