ﻻ يوجد ملخص باللغة العربية
We study gravitational perturbations around the near horizon geometry of the (near) extreme Kerr black hole. By considering a consistent truncation for the metric fluctuations, we obtain a solution to the linearized Einstein equations. The dynamics is governed by two master fields which, in the context of the nAdS$_2$/nCFT$_1$ correspondence, are both irrelevant operators of conformal dimension $Delta=2$. These fields control the departure from extremality by breaking the conformal symmetry of the near horizon region. One of the master fields is tied to large diffeomorphisms of the near horizon, with its equations of motion compatible with a Schwarzian effective action. The other field is essential for a consistent description of the geometry away from the horizon.
Collisions of particles in black holes ergospheres may result in an arbitrarily large center of mass energy. This led recently to the suggestion (Banados et al., 2009) that black holes can act as ultimate particle accelerators. If the energy of an ou
The membrane paradigm posits that black hole microstates are dynamical degrees of freedom associated with a physical membrane vanishingly close to the black holes event horizon. The soft hair paradigm postulates that black holes can be equipped with
To find the origin of chaos near black hole horizon in string-theoretic AdS/CFT correspondence, we perform a chaos analysis of a suspended string in AdS black hole backgrounds. It has a definite CFT interpretation: chaos of Wilson loops, or in other
Expanding around null hypersurfaces, such as generic Kerr black hole horizons, using co-rotating Kruskal-Israel-like coordinates we study the associated surface charges, their symmetries and the corresponding phase space within Einstein gravity. Our
We show that a class of solutions of minimal supergravity in five dimensions is given by lifts of three--dimensional Einstein--Weyl structures of hyper-CR type. We characterise this class as most general near--horizon limits of supersymmetric solutio