ترغب بنشر مسار تعليمي؟ اضغط هنا

Relation-aware Graph Attention Model With Adaptive Self-adversarial Training

59   0   0.0 ( 0 )
 نشر من قبل Nasrullah Sheikh
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper describes an end-to-end solution for the relationship prediction task in heterogeneous, multi-relational graphs. We particularly address two building blocks in the pipeline, namely heterogeneous graph representation learning and negative sampling. Existing message passing-based graph neural networks use edges either for graph traversal and/or selection of message encoding functions. Ignoring the edge semantics could have severe repercussions on the quality of embeddings, especially when dealing with two nodes having multiple relations. Furthermore, the expressivity of the learned representation depends on the quality of negative samples used during training. Although existing hard negative sampling techniques can identify challenging negative relationships for optimization, new techniques are required to control false negatives during training as false negatives could corrupt the learning process. To address these issues, first, we propose RelGNN -- a message passing-based heterogeneous graph attention model. In particular, RelGNN generates the states of different relations and leverages them along with the node states to weigh the messages. RelGNN also adopts a self-attention mechanism to balance the importance of attribute features and topological features for generating the final entity embeddings. Second, we introduce a parameter-free negative sampling technique -- adaptive self-adversarial (ASA) negative sampling. ASA reduces the false-negative rate by leveraging positive relationships to effectively guide the identification of true negative samples. Our experimental evaluation demonstrates that RelGNN optimized by ASA for relationship prediction improves state-of-the-art performance across established benchmarks as well as on a real industrial dataset.

قيم البحث

اقرأ أيضاً

Recent studies identified that sequential Recommendation is improved by the attention mechanism. By following this development, we propose Relation-Aware Kernelized Self-Attention (RKSA) adopting a self-attention mechanism of the Transformer with aug mentation of a probabilistic model. The original self-attention of Transformer is a deterministic measure without relation-awareness. Therefore, we introduce a latent space to the self-attention, and the latent space models the recommendation context from relation as a multivariate skew-normal distribution with a kernelized covariance matrix from co-occurrences, item characteristics, and user information. This work merges the self-attention of the Transformer and the sequential recommendation by adding a probabilistic model of the recommendation task specifics. We experimented RKSA over the benchmark datasets, and RKSA shows significant improvements compared to the recent baseline models. Also, RKSA were able to produce a latent space model that answers the reasons for recommendation.
In adversarial machine learning, there was a common belief that robustness and accuracy hurt each other. The belief was challenged by recent studies where we can maintain the robustness and improve the accuracy. However, the other direction, whether we can keep the accuracy while improving the robustness, is conceptually and practically more interesting, since robust accuracy should be lower than standard accuracy for any model. In this paper, we show this direction is also promising. Firstly, we find even over-parameterized deep networks may still have insufficient model capacity, because adversarial training has an overwhelming smoothing effect. Secondly, given limited model capacity, we argue adversarial data should have unequal importance: geometrically speaking, a natural data point closer to/farther from the class boundary is less/more robust, and the corresponding adversarial data point should be assigned with larger/smaller weight. Finally, to implement the idea, we propose geometry-aware instance-reweighted adversarial training, where the weights are based on how difficult it is to attack a natural data point. Experiments show that our proposal boosts the robustness of standard adversarial training; combining two directions, we improve both robustness and accuracy of standard adversarial training.
With the increasing popularity of graph-based learning, graph neural networks (GNNs) emerge as the essential tool for gaining insights from graphs. However, unlike the conventional CNNs that have been extensively explored and exhaustively tested, peo ple are still worrying about the GNNs robustness under the critical settings, such as financial services. The main reason is that existing GNNs usually serve as a black-box in predicting and do not provide the uncertainty on the predictions. On the other side, the recent advancement of Bayesian deep learning on CNNs has demonstrated its success of quantifying and explaining such uncertainties to fortify CNN models. Motivated by these observations, we propose UAG, the first systematic solution to defend adversarial attacks on GNNs through identifying and exploiting hierarchical uncertainties in GNNs. UAG develops a Bayesian Uncertainty Technique (BUT) to explicitly capture uncertainties in GNNs and further employs an Uncertainty-aware Attention Technique (UAT) to defend adversarial attacks on GNNs. Intensive experiments show that our proposed defense approach outperforms the state-of-the-art solutions by a significant margin.
76 - Richard Shin 2019
When translating natural language questions into SQL queries to answer questions from a database, we would like our methods to generalize to domains and database schemas outside of the training set. To handle complex questions and database schemas wi th a neural encoder-decoder paradigm, it is critical to properly encode the schema as part of the input with the question. In this paper, we use relation-aware self-attention within the encoder so that it can reason about how the tables and columns in the provided schema relate to each other and use this information in interpreting the question. We achieve significant gains on the recently-released Spider dataset with 42.94% exact match accuracy, compared to the 18.96% reported in published work.
Recent work has demonstrated that neural networks are vulnerable to adversarial examples. To escape from the predicament, many works try to harden the model in various ways, in which adversarial training is an effective way which learns robust featur e representation so as to resist adversarial attacks. Meanwhile, the self-supervised learning aims to learn robust and semantic embedding from data itself. With these views, we introduce self-supervised learning to against adversarial examples in this paper. Specifically, the self-supervised representation coupled with k-Nearest Neighbour is proposed for classification. To further strengthen the defense ability, self-supervised adversarial training is proposed, which maximizes the mutual information between the representations of original examples and the corresponding adversarial examples. Experimental results show that the self-supervised representation outperforms its supervised version in respect of robustness and self-supervised adversarial training can further improve the defense ability efficiently.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا