ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental Adiabatic Quantum Metrology with the Heisenberg scaling

75   0   0.0 ( 0 )
 نشر من قبل Ran Liu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The critical quantum metrology, which exploits the quantum phase transition for high precision measurement, has gained increasing attention recently. The critical quantum metrology with the continuous quantum phase transition, however, is experimentally very challenging since the continuous quantum phase transition only exists at the thermal dynamical limit. Here, we propose an adiabatic scheme on a perturbed Ising spin model with the first order quantum phase transition. By employing the Landau-Zener anticrossing, we can not only encode the unknown parameter in the ground state but also tune the energy gap to control the evolution time of the adiabatic passage. We experimentally implement the adiabatic scheme on the nuclear magnetic resonance and show that the achieved precision attains the Heisenberg scaling. The advantages of the scheme-easy implementation, robust against the decay, tunable energy gap-are critical for practical applications of quantum metrology.



قيم البحث

اقرأ أيضاً

84 - W. Wang , Y. Wu , Y. Ma 2019
Two-mode interferometers, such as Michelson interferometer based on two spatial optical modes, lay the foundations for quantum metrology. Instead of exploring quantum entanglement in the two-mode interferometers, a single bosonic mode also promises a measurement precision beyond the shot-noise limit (SNL) by taking advantage of the infinite-dimensional Hilbert space of Fock states. However, the experimental demonstration still remains elusive. Here, we demonstrate a single-mode phase estimation that approaches the Heisenberg limit (HL) unconditionally. Due to the strong dispersive nonlinearity and long coherence time of a microwave cavity, quantum states of the form $left(left|0rightrangle +left|Nrightrangle right)/sqrt{2}$ are generated, manipulated and detected with high fidelities, leading to an experimental phase estimation precision scaling as $sim N^{-0.94}$. A $9.1$~$mathrm{dB}$ enhancement of the precision over the SNL at $N=12$, which is only $1.7$~$mathrm{dB}$ away from the HL, is achieved. Our experimental architecture is hardware efficient and can be combined with the quantum error correction techniques to fight against decoherence, thus promises the quantum enhanced sensing in practical applications.
We show that the quantum Fisher information attained in an adiabatic approach to critical quantum metrology cannot lead to the Heisenberg limit of precision and therefore regular quantum metrology under optimal settings is always superior. Furthermor e, we argue that even though shortcuts to adiabaticity can arbitrarily decrease the time of preparing critical ground states, they cannot be used to achieve or overcome the Heisenberg limit for quantum parameter estimation in adiabatic critical quantum metrology. As case studies, we explore the application of counter-diabatic driving to the Landau-Zener model and the quantum Rabi model.
We provide efficient and intuitive tools for deriving bounds on achievable precision in quantum enhanced metrology based on the geometry of quantum channels and semi-definite programming. We show that when decoherence is taken into account, the maxim al possible quantum enhancement amounts generically to a constant factor rather than quadratic improvement. We apply these tools to derive bounds for models of decoherence relevant for metrological applications including: dephasing,depolarization, spontaneous emission and photon loss.
The goal of quantum metrology is the precise estimation of parameters using quantum properties such as entanglement. This estimation usually consists of three steps: state preparation, time evolution during which information of the parameters is enco ded in the state, and readout of the state. Decoherence during the time evolution typically degrades the performance of quantum metrology and is considered to be one of the major obstacles to realizing entanglement-enhanced sensing. We show, however, that under suitable conditions, this decoherence can be exploited to improve the sensitivity. Assume that we have two axes, and our aim is to estimate the relative angle between them. Our results reveal that the use of Markvoian collective dephasing to estimate the relative angle between the two directions affords Heisenberg-limited sensitivity. Moreover, our scheme based on Markvoian collective dephasing is robust against environmental noise, and it is possible to achieve the Heisenberg limit even under the effect of independent dephasing. Our counterintuitive results showing that the sensitivity is improved by using the decoherence pave the way to novel applications in quantum metrology.
The Heisenberg limit is the superior precision available by entanglement sensors. However, entanglementis fragile against dephasing, and there is no known quantum metrology protocol that can achieve Heisenberg limited sensitivity with the presence of independent dephasing. Here, we show that the Heisenberg limit is attainable under the effect of independent dephasing under conditions where the probe qubits decohere due to both target fields and local environments. To detect the target fields, we exploit the entanglement properties to decay much faster than the classical states due to collective noise while most of the previous schemes use a coherent phase shift from the target fields. Actually, if the temporally fluctuating target fields behave as Markovian collective dephasing, we can estimate the collective dephasing rate with a sensitivity at the Heisenberg limit under the effect of independent dephasing. Our work opens the possibility for robust Heisenberg-limited metrology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا