ﻻ يوجد ملخص باللغة العربية
The goal of quantum metrology is the precise estimation of parameters using quantum properties such as entanglement. This estimation usually consists of three steps: state preparation, time evolution during which information of the parameters is encoded in the state, and readout of the state. Decoherence during the time evolution typically degrades the performance of quantum metrology and is considered to be one of the major obstacles to realizing entanglement-enhanced sensing. We show, however, that under suitable conditions, this decoherence can be exploited to improve the sensitivity. Assume that we have two axes, and our aim is to estimate the relative angle between them. Our results reveal that the use of Markvoian collective dephasing to estimate the relative angle between the two directions affords Heisenberg-limited sensitivity. Moreover, our scheme based on Markvoian collective dephasing is robust against environmental noise, and it is possible to achieve the Heisenberg limit even under the effect of independent dephasing. Our counterintuitive results showing that the sensitivity is improved by using the decoherence pave the way to novel applications in quantum metrology.
Methods borrowed from the world of quantum information processing have lately been used to enhance the signal-to-noise ratio of quantum detectors. Here we analyze the use of stabilizer quantum error-correction codes for the purpose of signal detectio
Two-mode interferometers, such as Michelson interferometer based on two spatial optical modes, lay the foundations for quantum metrology. Instead of exploring quantum entanglement in the two-mode interferometers, a single bosonic mode also promises a
Including collisional decoherence explicitly, phase sensitivity for estimating effective scattering strength $chi$ of a two-component Bose-Einstein condensate is derived analytically. With a measurement of spin operator $hat{J}_{x}$, we find that the
The Heisenberg limit is the superior precision available by entanglement sensors. However, entanglementis fragile against dephasing, and there is no known quantum metrology protocol that can achieve Heisenberg limited sensitivity with the presence of
In this work an exactly solvable model of N two-level systems interacting with a single bosonic dephasing reservoir is considered to unravel the role played by collective non-Markovian dephasing. We show that phase estimation with entangled states fo