ترغب بنشر مسار تعليمي؟ اضغط هنا

Heisenberg limited single-mode quantum metrology

85   0   0.0 ( 0 )
 نشر من قبل Weiting Wang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-mode interferometers, such as Michelson interferometer based on two spatial optical modes, lay the foundations for quantum metrology. Instead of exploring quantum entanglement in the two-mode interferometers, a single bosonic mode also promises a measurement precision beyond the shot-noise limit (SNL) by taking advantage of the infinite-dimensional Hilbert space of Fock states. However, the experimental demonstration still remains elusive. Here, we demonstrate a single-mode phase estimation that approaches the Heisenberg limit (HL) unconditionally. Due to the strong dispersive nonlinearity and long coherence time of a microwave cavity, quantum states of the form $left(left|0rightrangle +left|Nrightrangle right)/sqrt{2}$ are generated, manipulated and detected with high fidelities, leading to an experimental phase estimation precision scaling as $sim N^{-0.94}$. A $9.1$~$mathrm{dB}$ enhancement of the precision over the SNL at $N=12$, which is only $1.7$~$mathrm{dB}$ away from the HL, is achieved. Our experimental architecture is hardware efficient and can be combined with the quantum error correction techniques to fight against decoherence, thus promises the quantum enhanced sensing in practical applications.



قيم البحث

اقرأ أيضاً

The goal of quantum metrology is the precise estimation of parameters using quantum properties such as entanglement. This estimation usually consists of three steps: state preparation, time evolution during which information of the parameters is enco ded in the state, and readout of the state. Decoherence during the time evolution typically degrades the performance of quantum metrology and is considered to be one of the major obstacles to realizing entanglement-enhanced sensing. We show, however, that under suitable conditions, this decoherence can be exploited to improve the sensitivity. Assume that we have two axes, and our aim is to estimate the relative angle between them. Our results reveal that the use of Markvoian collective dephasing to estimate the relative angle between the two directions affords Heisenberg-limited sensitivity. Moreover, our scheme based on Markvoian collective dephasing is robust against environmental noise, and it is possible to achieve the Heisenberg limit even under the effect of independent dephasing. Our counterintuitive results showing that the sensitivity is improved by using the decoherence pave the way to novel applications in quantum metrology.
537 - Roee Ozeri 2013
Methods borrowed from the world of quantum information processing have lately been used to enhance the signal-to-noise ratio of quantum detectors. Here we analyze the use of stabilizer quantum error-correction codes for the purpose of signal detectio n. We show that using quantum error-correction codes a small signal can be measured with Heisenberg limited uncertainty even in the presence of noise. We analyze the limitations to the measurement of signals of interest and discuss two simple examples. The possibility of long coherence times, combined with their Heisenberg limited sensitivity to certain signals, pose quantum error-correction codes as a promising detection scheme.
We study the sensitivity and resolution of phase measurement in a Mach-Zehnder interferometer with two-mode squeezed vacuum (<n> photons on average). We show that super-resolution and sub-Heisenberg sensitivity is obtained with parity detection. In p articular, in our setup, dependence of the signal on the phase evolves <n> times faster than in traditional schemes, and uncertainty in the phase estimation is better than 1/<n>.
73 - Jiahao Huang , Min Zhuang , Bo Lu 2018
Spin cat states are promising candidates for quantum-enhanced measurement. Here, we analytically show that the ultimate measurement precision of spin cat states approaches the Heisenberg limit, where the uncertainty is inversely proportional to the t otal particle number. In order to fully exploit their metrological ability, we propose to use the interaction-based readout for implementing phase estimation. It is demonstrated that the interaction-based readout enables spin cat states to saturate their ultimate precision bounds. The interaction-based readout comprises a one-axis twisting, two $frac{pi}{2}$ pulses, and a population measurement, which can be realized via current experimental techniques. Compared with the twisting echo scheme on spin squeezed states, our scheme with spin cat states is more robust against detection noise. Our scheme may pave an experimentally feasible way to achieve Heisenberg-limited metrology with non-Gaussian entangled states.
We provide efficient and intuitive tools for deriving bounds on achievable precision in quantum enhanced metrology based on the geometry of quantum channels and semi-definite programming. We show that when decoherence is taken into account, the maxim al possible quantum enhancement amounts generically to a constant factor rather than quadratic improvement. We apply these tools to derive bounds for models of decoherence relevant for metrological applications including: dephasing,depolarization, spontaneous emission and photon loss.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا