ﻻ يوجد ملخص باللغة العربية
A first-principle multiscale modeling approach is presented, which is derived from the solution of the Ornstein-Zernike equation for the coarse-grained representation of polymer liquids. The approach is analytical, and for this reason is transferable. It is here applied to determine the structure of several polymeric systems, which have different parameter values, such as molecular length, monomeric structure, local flexibility, and thermodynamic conditions. When the pair distribution function obtained from this procedure is compared with the results from a full atomistic simulation, it shows quantitative agreement. Moreover, the multiscale procedure accurately captures both large and local scale properties while remaining computationally advantageous.
We present a detailed derivation and testing of our approach to rescale the dynamics of mesoscale simulations of coarse-grained polymer melts (I. Y. Lyubimov et al. J. Chem. Phys. textbf{132}, 11876, 2010). Starting from the first-principle Liouville
Using concepts from integral geometry, we propose a definition for a local coarse-grained curvature tensor that is well-defined on polygonal surfaces. This coarse-grained curvature tensor shows fast convergence to the curvature tensor of smooth surfa
Integral equation theory is applied to a coarse-grained model of water to study potential of mean force between hydrophobic solutes. Theory is shown to be in good agreement with the available simulation data for methane-methane and fullerene-fulleren
Room-temperature ionic liquids (RTILs) stand out among molecular liquids for their rich physicochemical characteristics, including structural and dynamic heterogeneity. The significance of electrostatic interactions in RTILs results in long character
We study DNA self-assembly and DNA computation using a coarse-grained DNA model within the directional dynamic bonding framework {[}C. Svaneborg, Comp. Phys. Comm. 183, 1793 (2012){]}. In our model, a single nucleotide or domain is represented by a s