ﻻ يوجد ملخص باللغة العربية
Diamond quantum technologies based on color centers have rapidly emerged in the most recent years. The nitrogen-vacancy (NV) color center has attracted a particular interest, thanks to its outstanding spin properties and optical addressability. The NV center has been used to realize innovative multimode quantum-enhanced sensors that offer an unprecedented combination of high sensitivity and spatial resolution at room temperature. The technological progress and the widening of potential sensing applications have induced an increasing demand for performance advances of NV quantum sensors. Quantum control plays a key role in responding to this demand. This short review affords an overview on recent advances in quantum control-assisted quantum sensing and spectroscopy of magnetic fields.
Diamond based quantum technology is a fast emerging field with both scientific and technological importance. With the growing knowledge and experience concerning diamond based quantum systems, comes an increased demand for performance. Quantum optima
Hybrid quantum devices, in which disparate quantum elements are combined in order to achieve enhanced functionality, have received much attention in recent years due to their exciting potential to address key problems in quantum information processin
A single nitrogen-vacancy (NV) center in diamond is a prime candidate for a solid-state quantum magnetometer capable of detecting single nuclear spins with prospective application to nuclear magnetic resonance (NMR) at the nanoscale. Nonetheless, an
We designed a nanoscale light extractor (NLE) for efficient outcoupling and beaming of broadband light emitted by shallow, negatively charged nitrogen-vacancy (NV) centers in bulk diamond. The NLE consists of a patterned silicon layer on diamond and
We demonstrate an all-optical thermometer based on an ensemble of silicon-vacancy centers (SiVs) in diamond by utilizing a temperature dependent shift of the SiV optical zero-phonon line transition frequency, $Deltalambda/Delta T= 6.8,mathrm{GHz/K}$.