ترغب بنشر مسار تعليمي؟ اضغط هنا

Introduction to Quantum Optimal Control for Quantum Sensing with Nitrogen-Vacancy Centers in Diamond

177   0   0.0 ( 0 )
 نشر من قبل Nimba Oshnik
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Diamond based quantum technology is a fast emerging field with both scientific and technological importance. With the growing knowledge and experience concerning diamond based quantum systems, comes an increased demand for performance. Quantum optimal control (QOC) provides a direct solution to a number of existing challenges as well as a basis for proposed future applications. Together with a swift review of QOC strategies, quantum sensing and other relevant quantum technology applications of nitrogen-vacancy (NV) centers in diamond, we give the necessary background to summarize recent advancements in the field of QOC assisted quantum applications with NV centers in diamond.



قيم البحث

اقرأ أيضاً

Diamond quantum technologies based on color centers have rapidly emerged in the most recent years. The nitrogen-vacancy (NV) color center has attracted a particular interest, thanks to its outstanding spin properties and optical addressability. The N V center has been used to realize innovative multimode quantum-enhanced sensors that offer an unprecedented combination of high sensitivity and spatial resolution at room temperature. The technological progress and the widening of potential sensing applications have induced an increasing demand for performance advances of NV quantum sensors. Quantum control plays a key role in responding to this demand. This short review affords an overview on recent advances in quantum control-assisted quantum sensing and spectroscopy of magnetic fields.
An ensemble of nitrogen-vacancy (NV) centers in diamond is an attractive device to detect small magnetic fields. In particular, by exploiting the fact that the NV center can be aligned along one of four different axes due to symmetry, it is possible to extract information concerning vector magnetic fields. However, in the conventional scheme, low readout contrasts of the NV centers significantly decrease the sensitivity of the vector magnetic field sensing. Here, we propose a way to improve the sensitivity of the vector magnetic field sensing of the NV centers using multi-frequency control. Since the Zeeman energy of the NV centers depends on the direction of the axis, we can independently control the four types of NV centers using microwave pulses with different frequencies. This allows us to use every NV center for the vector field detection in parallel, which effectively increases the readout contrast. Our results pave the way to realize a practical diamond-based vector field sensor.
329 - E. Poem , C. Weinzetl , J. Klatzow 2014
It is proposed that the ground-state manifold of the neutral nitrogen-vacancy center in diamond could be used as a quantum two-level system in a solid-state-based implementation of a broadband, noise-free quantum optical memory. The proposal is based on the same-spin $Lambda$-type three-level system created between the two E orbital ground states and the A$_1$ orbital excited state of the center, and the cross-linear polarization selection rules obtained with the application of transverse electric field or uniaxial stress. Possible decay and decoherence mechanisms of this system are discussed, and it is shown that high-efficiency, noise-free storage of photons as short as a few tens of picoseconds for at least a few nanoseconds could be possible at low temperature.
We demonstrate the super-resolution localization of the nitrogen vacancy centers in diamond by a novel fluorescence photoswitching technique based on coherent quantum control. The photoswitching is realized by the quantum phase encoding based on puls ed magnetic field gradient. Then we perform super-resolution imaging and achieve a localizing accuracy better than 1.4 nm under a scanning confocal microscope. Finally, we show that the quantum phase encoding plays a dominant role on the resolution, and a resolution of 0.15 nm is achievable under our current experimental condition. This method can be applied in subnanometer scale addressing and control of qubits based on multiple coupled defect spins.
We demonstrate quantum interference between indistinguishable photons emitted by two nitrogen-vacancy (NV) centers in distinct diamond samples separated by two meters. Macroscopic solid immersion lenses are used to enhance photon collection efficienc y. Quantum interference is verified by measuring a value of the second-order cross-correlation function $g^{(2)}(0) = 0.35 pm 0.04<0.5$. In addition, optical transition frequencies of two separated NV centers are tuned into resonance with each other by applying external electric fields. Extension of the present approach to generate entanglement of remote solid-state qubits is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا