ﻻ يوجد ملخص باللغة العربية
Diamond based quantum technology is a fast emerging field with both scientific and technological importance. With the growing knowledge and experience concerning diamond based quantum systems, comes an increased demand for performance. Quantum optimal control (QOC) provides a direct solution to a number of existing challenges as well as a basis for proposed future applications. Together with a swift review of QOC strategies, quantum sensing and other relevant quantum technology applications of nitrogen-vacancy (NV) centers in diamond, we give the necessary background to summarize recent advancements in the field of QOC assisted quantum applications with NV centers in diamond.
Diamond quantum technologies based on color centers have rapidly emerged in the most recent years. The nitrogen-vacancy (NV) color center has attracted a particular interest, thanks to its outstanding spin properties and optical addressability. The N
An ensemble of nitrogen-vacancy (NV) centers in diamond is an attractive device to detect small magnetic fields. In particular, by exploiting the fact that the NV center can be aligned along one of four different axes due to symmetry, it is possible
It is proposed that the ground-state manifold of the neutral nitrogen-vacancy center in diamond could be used as a quantum two-level system in a solid-state-based implementation of a broadband, noise-free quantum optical memory. The proposal is based
We demonstrate the super-resolution localization of the nitrogen vacancy centers in diamond by a novel fluorescence photoswitching technique based on coherent quantum control. The photoswitching is realized by the quantum phase encoding based on puls
We demonstrate quantum interference between indistinguishable photons emitted by two nitrogen-vacancy (NV) centers in distinct diamond samples separated by two meters. Macroscopic solid immersion lenses are used to enhance photon collection efficienc