ترغب بنشر مسار تعليمي؟ اضغط هنا

First analysis of world polarized DIS data with small-$x$ helicity evolution

78   0   0.0 ( 0 )
 نشر من قبل Daniel Adamiak
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a Monte Carlo based analysis of the combined world data on polarized lepton-nucleon deep-inelastic scattering at small Bjorken $x$ within the polarized quark dipole formalism. We show for the first time that double-spin asymmetries at $x<0.1$ can be successfully described using only small-$x$ evolution derived from first-principles QCD, allowing predictions to be made for the $g_1$ structure function at much smaller $x$. Anticipating future data from the Electron-Ion Collider, we assess the impact of electromagnetic and parity-violating polarization asymmetries on $g_1$ and demonstrate an extraction of the individual flavor helicity PDFs at small $x$.

قيم البحث

اقرأ أيضاً

We present a global fit to the structure function F_2 measured in lepton-proton experiments at small values of Bjorken-x, x< 0.01, for all experimentally available values of Q^2, 0.045< Q^2 < 800 GeV^2, using the Balitsky -Kovchegov equation includin g running coupling corrections. Using our fits to F_2, we reproduce available data for F_L and perform predictions, parameter-free and completely driven by small-x evolution, to the kinematic range relevant for the LHeC.
Azimuthal angular correlations between produced hadrons/jets in high energy collisions are a sensitive probe of the dynamics of QCD at small x. Here we derive the triple differential cross section for inclusive production of 3 polarized partons in DI S at small x using the spinor helicity formalism. The target proton or nucleus is described using the Color Glass Condensate (CGC) formalism. The resulting expressions are used to study azimuthal angular correlations between produced partons in order to probe the gluon structure of the target hadron or nucleus. Our analytic expressions can also be used to calculate the real part of the Next to Leading Order (NLO) corrections to di-hadron production in DIS by integrating out one of the three final state partons.
We rederive the small-$x$ evolution equations governing quark helicity distribution in a proton using solely an operator-based approach. In our previous works on the subject, the evolution equations were derived using a mix of diagrammatic and operat or-based methods. In this work, we re-derive the double-logarithmic small-$x$ evolution equations for quark helicity in terms of the polarized Wilson lines, the operators consisting of light-cone Wilson lines with one or two non-eikonal local operator insertions which bring in helicity dependence. For the first time we give explicit and complete expressions for the quark and gluon polarized Wilson line operators, including insertions of both the gluon and quark sub-eikonal operators. We show that the double-logarithmic small-$x$ evolution of the polarized dipole amplitude operators, made out of regular light-cone Wilson lines along with the polarized ones constructed here, reproduces the equations derived in our earlier works. The method we present here can be used as a template for determining the small-$x$ asymptotics of any transverse momentum-dependent (TMD) quark (or gluon) parton distribution functions (PDFs), and is not limited to helicity.
We present the first extraction of the transversity distribution in the framework of collinear factorization based on the global analysis of pion-pair production in deep-inelastic scattering off transversely polarized targets and in proton-proton col lisions with one transversely polarized proton. The extraction relies on the knowledge of di-hadron fragmentation functions, which are taken from the analysis of electron-positron annihilation data. For the first time, the chiral-odd transversity is extracted from a global analysis similar to what is usually done for the chiral-even spin-averaged and helicity distributions. The knowledge of transversity is important for, among other things, detecting possible signals of new physics in high-precision low-energy experiments.
We present a general analysis of the orbital angular momentum (OAM) distribution of gluons $L_g(x)$ inside the nucleon with particular emphasis on the small-$x$ region. We derive a novel operator representation of $L_g(x)$ in terms of Wilson lines an d argue that it is approximately proportional to the gluon helicity distribution $L_g(x) approx -2Delta G(x)$ at small-$x$. We also compute longitudinal single spin asymmetry in exclusive diffractive dijet production in lepton-nucleon scattering in the next-to-eikonal approximation and show that the asymmetry is a direct probe of the gluon helicity/OAM distribution as well as the QCD odderon exchange.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا