ﻻ يوجد ملخص باللغة العربية
We present a general analysis of the orbital angular momentum (OAM) distribution of gluons $L_g(x)$ inside the nucleon with particular emphasis on the small-$x$ region. We derive a novel operator representation of $L_g(x)$ in terms of Wilson lines and argue that it is approximately proportional to the gluon helicity distribution $L_g(x) approx -2Delta G(x)$ at small-$x$. We also compute longitudinal single spin asymmetry in exclusive diffractive dijet production in lepton-nucleon scattering in the next-to-eikonal approximation and show that the asymmetry is a direct probe of the gluon helicity/OAM distribution as well as the QCD odderon exchange.
We determine the small Bjorken $x$ asymptotics of the quark and gluon orbital angular momentum (OAM) distributions in the proton in the double-logarithmic approximation (DLA), which resums powers of $alpha_s ln^2 (1/x)$ with $alpha_s$ the strong coup
We introduced a generalized Wilson line gauge link that reproduces both staple and near straight links in different limits. We then studied the gauge-invariant bi-local orbital angular momentum operator with such a general gauge link, in the framewor
We derive analytical results for unintegrated color dipole gluon distribution function at small transverse momentum. By Fourier transforming the $S$-matrix for large dipoles we derive the results in the form of a series of Bells polynomials. Interest
The orbital angular momentum of quarks and gluons contributes significantly to the proton spin budget and attracted a lot of attention in the recent years, both theoretically and experimentally. We summarize the various definitions of parton orbital
We perform a phenomenological analysis of the $cos 2 phi $ azimuthal asymmetry in virtual photon plus jet production induced by the linear polarization of gluons in unpolarized $pA$ collisions. Although the linearly polarized gluon distribution becom