ترغب بنشر مسار تعليمي؟ اضغط هنا

A Global Analysis of DIS Data at Small-x with Running Coupling BK Evolution

139   0   0.0 ( 0 )
 نشر من قبل Javier L. Albacete
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a global fit to the structure function F_2 measured in lepton-proton experiments at small values of Bjorken-x, x< 0.01, for all experimentally available values of Q^2, 0.045< Q^2 < 800 GeV^2, using the Balitsky -Kovchegov equation including running coupling corrections. Using our fits to F_2, we reproduce available data for F_L and perform predictions, parameter-free and completely driven by small-x evolution, to the kinematic range relevant for the LHeC.



قيم البحث

اقرأ أيضاً

We perform a global fit to the structure function F_2 measured in lepton-proton experiments at small values of Bjorken-x, xle 0.01, for all experimentally available values of Q^2, 0.045 GeV^2le Q^2 le 800 GeV^2. We show that the recent improvements r esulting from the inclusion of running coupling corrections allow for a description of data in terms of non-linear QCD evolution equations. In this approach F_2 is calculated within the dipole model with all Bjorken-x dependence described by the running coupling Balitsky-Kovchegov equation. Two different initial conditions for the evolution are used, both yielding excellent fits to data with chi^2/d.o.f.<1.1. Data for the proton longitudinal structure function F_L, not included in the fits, are also well described. We provide predictions for F_2 and F_L in the kinematical regions of interest for future colliders and ultra-high energy cosmic rays. Our analysis allows to perform a first principle extrapolation of the proton-dipole scattering amplitude. A numerical implementation of our results down to x=10^{-12} is released as a computer code for public use.
We present a Monte Carlo based analysis of the combined world data on polarized lepton-nucleon deep-inelastic scattering at small Bjorken $x$ within the polarized quark dipole formalism. We show for the first time that double-spin asymmetries at $x<0 .1$ can be successfully described using only small-$x$ evolution derived from first-principles QCD, allowing predictions to be made for the $g_1$ structure function at much smaller $x$. Anticipating future data from the Electron-Ion Collider, we assess the impact of electromagnetic and parity-violating polarization asymmetries on $g_1$ and demonstrate an extraction of the individual flavor helicity PDFs at small $x$.
In this paper we present the results of numerical studies of the JIMWLK and BK equations with a particular emphasis on the universal scaling properties and phase space structure involved. The results are valid for near zero impact parameter in DIS. W e demonstrate IR safety due to the occurrence of a rapidity dependent saturation scale Q_s(tau). Within the set of initial conditions chosen both JIMWLK and BK equations show remarkable agreement. We point out the crucial importance of running coupling corrections to obtain consistency in the UV. Despite the scale breaking induced by the running coupling we find that evolution drives correlators towards an asymptotic form with near scaling properties. We discuss asymptotic features of the evolution, such as the tau- and A-dependence of Q_s away from the initial condition.
Starting from the dipole representation of small-$x$ evolution we implement the running of the coupling in a self-consistent way. This results in an evolution equation for the dipole density in Borel $(b)$ space. We show that the Borel image of the d ipole density is analytic in the neighbourhood of $b=0$ and that it is equal to the BFKL solution at $b=0$. We study the Borel singularity structure of the dipole cascade emanating from a virtual photon at small $x$ and find a branch cut on the positive $b$-semiaxis starting at $b=1/ beta_0$. This indicates the presence of $1/Q^2$ power corrections to the small-$x$ structure functions. Finally we present numerical results in the context of D.I.S.
Deep inelastic scattering data on F2 structure function from various fixed-target experiments were analyzed in the non-singlet approximation with a next-to-next-to-leading-order accuracy. The study of high statistics deep inelastic scattering data pr ovided by BCDMS, SLAC, NMC and BFP collaborations was carried out separately for the first one and the rest, followed by a combined analysis done as well. For the coupling constant the following value alpha_s(M_Z^2) = 0.1167 +/- 0.0021 (total exp.error) +0.0056/-0.0036(theor) was found, which in this approximation turns out to be slightly less than that obtained at the next-to-leading-order, as was generally anticipated. Ditto the theoretical uncertainties reduced with respect to those obtained in the case of the next-to-leading-order analysis thus confirming earlier observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا