ترغب بنشر مسار تعليمي؟ اضغط هنا

Design and application of high-speed and high-precision CV gate on IBM Q OpenPulse system

139   0   0.0 ( 0 )
 نشر من قبل Takahiko Satoh
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Faster and more precise physical processing of quantum gate, by suitably designing a pulse sequence to implement the target gate, will greatly improve the performance of quantum algorithms in the presence of noise. In this paper, we demonstrate that, by employing OpenPulse design kit for IBM Q devices, the controlled-V gate (CV gate) can be implemented in about 34.5 % shorter gate time, with 0.66 % improvement in the average gate fidelity, compared to the standard version provided there. Then, based on the theory of Cartan decomposition, we show that the performance of several two-qubit gates containing CV gates can also be improved. Moreover, the average gate fidelity of Toffoli gate can be improved to 96.16 % from 90.23 % achieved in the default IBM Q package. These results imply the importance of our CV gate implementation technique, which, as an additional option for the basis_gate set design, may shorten the overall computation time and consequently improve the accuracy of several quantum algorithms.

قيم البحث

اقرأ أيضاً

We report the first experimental demonstration of quantum synchronization. This is achieved by performing a digital simulation of a single spin-$1$ limit-cycle oscillator on the quantum computers of the IBM Q System. Applying an external signal to th e oscillator, we verify typical features of quantum synchronization and demonstrate an interference-based quantum synchronization blockade. Our results show that state-of-the-art noisy intermediate-scale quantum computers are powerful enough to implement realistic dissipative quantum systems. Finally, we discuss limitations of current quantum hardware and define requirements necessary to investigate more complex problems.
A remarkably simple result is found for the optimal protocol of drivings for a general two-level Hamiltonian which transports a given initial state to a given final state in minimal time. If one of the three possible drivings is unconstrained in stre ngth the problem is analytically completely solvable. A surprise arises for a class of states when one driving is bounded by a constant $c$ and the other drivings are constant. Then, for large $c$, the optimal driving is of type bang-off-bang and for increasing $c$ one recovers the unconstrained result. However, for smaller $c$ the optimal driving can suddenly switch to bang-bang type. It is also shown that for general states one may have a multistep protocol. The present paper explicitly proves and considerably extends the authors results contained in Phys. Rev. Lett. {bf 111}, 260501 (2013).
Entanglement properties of IBM Q 53 qubit quantum computer are carefully examined with the noisy intermediate-scale quantum (NISQ) technology. We study GHZ-like states with multiple qubits (N=2 to N=7) on IBM Rochester and compare their maximal viola tion values of Mermin polynomials with analytic results. A rule of N-qubits orthogonal measurements is taken to further justify the entanglement less than maximal values of local realism (LR). The orthogonality of measurements is another reliable criterion for entanglement except the maximal values of LR. Our results indicate that the entanglement of IBM 53-qubits is reasonably good when N <= 4 while for the longer entangle chains the entanglement is only valid for some special connectivity.
59 - Felix Hormuth 2008
MicroLux is a GPS-based high precision and high speed timing add-on to the Calar Alto Lucky Imaging camera AstraLux. It allows timestamping of individual CCD exposures at frame rates of more than 1 kHz with an accuracy better than one microsecond wit h respect to the UTC timeframe. The system was successfully used for high speed observations of the optical pulse profile of the Crab pulsar in January and November 2007. I present the technical design concept of MicroLux as well as first results from these observations, in particular the reconstructed pulse profile of the pulsar.
We study the results of a compiled version of Shors factoring algorithm on the ibmqx5 superconducting chip, for the particular case of $N=15$, $21$ and $35$. The semi-classical quantum Fourier transform is used to implement the algorithm with only a small number of physical qubits and the circuits are designed to reduce the number of gates to the minimum. We use the square of the statistical overlap to give a quantitative measure of the similarity between the experimentally obtained distribution of phases and the predicted theoretical distribution one for different values of the period. This allows us to assign a period to the experimental data without the use of the continued fraction algorithm. A quantitative estimate of the error in our assignment of the period is then given by the overlap coefficient.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا