ﻻ يوجد ملخص باللغة العربية
We study the results of a compiled version of Shors factoring algorithm on the ibmqx5 superconducting chip, for the particular case of $N=15$, $21$ and $35$. The semi-classical quantum Fourier transform is used to implement the algorithm with only a small number of physical qubits and the circuits are designed to reduce the number of gates to the minimum. We use the square of the statistical overlap to give a quantitative measure of the similarity between the experimentally obtained distribution of phases and the predicted theoretical distribution one for different values of the period. This allows us to assign a period to the experimental data without the use of the continued fraction algorithm. A quantitative estimate of the error in our assignment of the period is then given by the overlap coefficient.
We report a proof-of-concept demonstration of a quantum order-finding algorithm for factoring the integer 21. Our demonstration involves the use of a compiled version of the quantum phase estimation routine, and builds upon a previous demonstration b
The number of steps any classical computer requires in order to find the prime factors of an $l$-digit integer $N$ increases exponentially with $l$, at least using algorithms known at present. Factoring large integers is therefore conjectured to be i
We determine the cost of performing Shors algorithm for integer factorization on a ternary quantum computer, using two natural models of universal fault-tolerant computing: (i) a model based on magic state distillation that assumes the availability
The quantum multicomputer consists of a large number of small nodes and a qubus interconnect for creating entangled state between the nodes. The primary metric chosen is the performance of such a system on Shors algorithm for factoring large numbers:
We optimize the area and latency of Shors factoring while simultaneously improving fault tolerance through: (1) balancing the use of ancilla generators, (2) aggressive optimization of error correction, and (3) tuning the core adder circuits. Our cust