ﻻ يوجد ملخص باللغة العربية
Entanglement properties of IBM Q 53 qubit quantum computer are carefully examined with the noisy intermediate-scale quantum (NISQ) technology. We study GHZ-like states with multiple qubits (N=2 to N=7) on IBM Rochester and compare their maximal violation values of Mermin polynomials with analytic results. A rule of N-qubits orthogonal measurements is taken to further justify the entanglement less than maximal values of local realism (LR). The orthogonality of measurements is another reliable criterion for entanglement except the maximal values of LR. Our results indicate that the entanglement of IBM 53-qubits is reasonably good when N <= 4 while for the longer entangle chains the entanglement is only valid for some special connectivity.
We report the first experimental demonstration of quantum synchronization. This is achieved by performing a digital simulation of a single spin-$1$ limit-cycle oscillator on the quantum computers of the IBM Q System. Applying an external signal to th
We have studied carefully the behaviors of entangled qubits on the IBM Rochester with various connectivities and under a noisy environment. A phase trajectory analysis based on our measurements of the GHZ-like states is performed. Our results point t
We study the results of a compiled version of Shors factoring algorithm on the ibmqx5 superconducting chip, for the particular case of $N=15$, $21$ and $35$. The semi-classical quantum Fourier transform is used to implement the algorithm with only a
Faster and more precise physical processing of quantum gate, by suitably designing a pulse sequence to implement the target gate, will greatly improve the performance of quantum algorithms in the presence of noise. In this paper, we demonstrate that,
We study sequential state discrimination measurements performed on the same qubit by subsequent observers. Specifically, we focus on the case when the observers perform a kind of a minimum-error type state discriminating measurement where the goal of