ﻻ يوجد ملخص باللغة العربية
Internet of Things (IoT) and related applications have successfully contributed towards enhancing the value of life in this planet. The advanced wireless sensor networks and its revolutionary computational capabilities have enabled various IoT applications become the next frontier, touching almost all domains of life. With this enormous progress, energy optimization has also become a primary concern with the need to attend to green technologies. The present study focuses on the predictions pertinent to the sustainability of battery life in IoT frameworks in the marine environment. The data used is a publicly available dataset collected from the Chicago district beach water. Firstly, the missing values in the data are replaced with the attribute mean. Later, one-hot encoding technique is applied for achieving data homogeneity followed by the standard scalar technique to normalize the data. Then, rough set theory is used for feature extraction, and the resultant data is fed into a Deep Neural Network (DNN) model for the optimized prediction results. The proposed model is then compared with the state of the art machine learning models and the results justify its superiority on the basis of performance metrics such as Mean Squared Error, Mean Absolute Error, Root Mean Squared Error, and Test Variance Score.
Hundreds of millions of people lack access to electricity. Decentralised solar-battery systems are key for addressing this whilst avoiding carbon emissions and air pollution, but are hindered by relatively high costs and rural locations that inhibit
Internet of Things (IoT) enabled wearable sensors for health monitoring are widely used to reduce the cost of personal healthcare and improve quality of life. The sleep apnea-hypopnea syndrome, characterized by the abnormal reduction or pause in brea
As digitization increases, the need to automate various entities becomes crucial for development. The data generated by the IoT devices need to be processed accurately and in a secure manner. The basis for the success of such a scenario requires bloc
Narrowband internet-of-things (NB-IoT) is a competitive 5G technology for massive machine-type communication scenarios, but meanwhile introduces narrowband interference (NBI) to existing broadband transmission such as the long term evolution (LTE) sy
This paper presents a novel framework for traffic prediction of IoT devices activated by binary Markovian events. First, we consider a massive set of IoT devices whose activation events are modeled by an On-Off Markov process with known transition pr