ﻻ يوجد ملخص باللغة العربية
This paper presents a novel framework for traffic prediction of IoT devices activated by binary Markovian events. First, we consider a massive set of IoT devices whose activation events are modeled by an On-Off Markov process with known transition probabilities. Next, we exploit the temporal correlation of the traffic events and apply the forward algorithm in the context of hidden Markov models (HMM) in order to predict the activation likelihood of each IoT device. Finally, we apply the fast uplink grant scheme in order to allocate resources to the IoT devices that have the maximal likelihood for transmission. In order to evaluate the performance of the proposed scheme, we define the regret metric as the number of missed resource allocation opportunities. The proposed fast uplink scheme based on traffic prediction outperforms both conventional random access and time division duplex in terms of regret and efficiency of system usage, while it maintains its superiority over random access in terms of average age of information for massive deployments.
Grant-free sparse code multiple access (GF-SCMA) is considered to be a promising multiple access candidate for future wireless networks. In this paper, we focus on characterizing the performance of uplink GF-SCMA schemes in a network with ubiquitous
In this paper, user detection performance of a grant-free uplink transmission in a large scale antenna system is analyzed, in which a general grant-free multiple access is considered as the system model and Zadoff-Chu sequence is used for the uplink
The current random access (RA) allocation techniques suffer from congestion and high signaling overhead while serving massive machine type communication (mMTC) applications. To this end, 3GPP introduced the need to use fast uplink grant (FUG) allocat
Future wireless communications are largely inclined to deploy a massive number of antennas at the base stations (BS) by exploiting energy-efficient and environmentally friendly technologies. An emerging technology called dynamic metasurface antennas
This paper investigates a full-duplex orthogonal-frequency-division multiple access (OFDMA) based multiple unmanned aerial vehicles (UAVs)-enabled wireless-powered Internet-of-Things (IoT) networks. In this paper, a swarm of UAVs is first deployed in