ﻻ يوجد ملخص باللغة العربية
We present a polarization-resolved, high-resolution Raman scattering study of the three consecutive charge density wave (CDW) regimes in $1T$-TaS$_2$ single crystals, supported by textit{ab initio} calculations. Our analysis of the spectra within the low-temperature commensurate (C-CDW) regime shows $mathrm{P3}$ symmetry of the system, thus excluding the previously proposed triclinic stacking of the star-of-David structure, and promoting trigonal or hexagonal stacking instead. The spectra of the high-temperature incommensurate (IC-CDW) phase directly project the phonon density of states due to the breaking of the translational invariance, supplemented by sizeable electron-phonon coupling. Between 200 and 352,K, our Raman spectra show contributions from both the IC-CDW and the C-CDW phase, indicating their coexistence in the so-called nearly-commensurate (NC-CDW) phase. The temperature-dependence of the symmetry-resolved Raman conductivity indicates the stepwise reduction of the density of states in the CDW phases, followed by a Mott transition within the C-CDW phase. We determine the size of the Mott gap to be $Omega_{rm gap}approx 170-190$ meV, and track its temperature dependence.
1T-TaS$_2$ undergoes successive phase transitions upon cooling and eventually enters an insulating state of mysterious origin. Some consider this state to be a band insulator with interlayer stacking order, yet others attribute it to Mott physics tha
The transition metal dichalcogenide (TMD) $1T$-TaS$_{2}$ exhibits a rich set of charge density wave (CDW) orders. Recent investigations suggested that using light or electric field can manipulate the commensurate (C) CDW ground state. Such manipulati
Tuning the electronic properties of a matter is of fundamental interest in scientific research as well as in applications. Recently, the Mott insulator-metal transition has been reported in a pristine layered transition metal dichalcogenides 1T-TaS$_
We investigate the low-temperature charge-density-wave (CDW) state of bulk TaS$_2$ with a fully self-consistent DFT+U approach, over which the controversy has remained unresolved regarding the out-of-plane metallic band. By examining the innate struc
Femtosecond time-resolved core-level photoemission spectroscopy with a free-electron laser is used to measure the atomic-site specific charge-order dynamics in the charge-density-wave/Mott insulator 1T-TaS2. After strong photoexcitation, a prompt los