ترغب بنشر مسار تعليمي؟ اضغط هنا

Possible strain induced Mott gap collapse in 1T-TaS$_2$

273   0   0.0 ( 0 )
 نشر من قبل Kunliang Bu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Tuning the electronic properties of a matter is of fundamental interest in scientific research as well as in applications. Recently, the Mott insulator-metal transition has been reported in a pristine layered transition metal dichalcogenides 1T-TaS$_2$, with the transition triggered by an optical excitation, a gate controlled intercalation, or a voltage pulse. However, the sudden insulator-metal transition hinders an exploration of how the transition evolves. Here, we report the strain as a possible new tuning parameter to induce Mott gap collapse in 1T-TaS$_2$. In a strain-rich area, we find a mosaic state with distinct electronic density of states within different domains. In a corrugated surface, we further observe and analyze a smooth evolution from a Mott gap state to a metallic state. Our results shed new lights on the understanding of the insulator-metal transition and promote a controllable strain engineering on the design of switching devices in the future.



قيم البحث

اقرأ أيضاً

122 - Y. D. Wang , W. L. Yao , Z. M. Xin 2020
1T-TaS$_2$ undergoes successive phase transitions upon cooling and eventually enters an insulating state of mysterious origin. Some consider this state to be a band insulator with interlayer stacking order, yet others attribute it to Mott physics tha t support a quantum spin liquid state.Here, we determine the electronic and structural properties of 1T-TaS$_2$ using angle-resolved photoemission spectroscopy and X-Ray diffraction. At low temperatures, the 2$pi$/2c-periodic band dispersion, along with half-integer-indexed diffraction peaks along the c axis, unambiguously indicates that the ground state of 1T-TaS$_2$ is a band insulator with interlayer dimerization. Upon heating, however, the system undergoes a transition into a Mott insulating state, which only exists in a narrow temperature window. Our results refute the idea of searching for quantum magnetism in 1T-TaS$_2$ only at low temperatures, and highlight the competition between on-site Coulomb repulsion and interlayer hopping as a crucial aspect for understanding the materials electronic properties.
We investigate the low-temperature charge-density-wave (CDW) state of bulk TaS$_2$ with a fully self-consistent DFT+U approach, over which the controversy has remained unresolved regarding the out-of-plane metallic band. By examining the innate struc ture of the Hubbard U potential, we reveal that the conventional use of atomic-orbital basis could seriously misevaluate the electron correlation in the CDW state. By adopting a generalized basis, covering the whole David star, we successfully reproduce the Mott insulating nature with the layer-by-layer antiferromagnetic order. Similar consideration should be applied for description of the electron correlation in molecular solid.
1T-TaS$_2$ is a charge-density-wave (CDW) compound with a Mott-insulating ground state. The metallic state obtained by doping, substitution or pulsed charge injection is characterized by an emergent CDW domain wall network, while single domain walls can be found in the pristine Mott state. Here we study whether and how the single walls become metallic. Tunneling spectroscopy reveals partial suppression of the Mott gap and the presence of in-gap states strongly localized at the domain-wall sites. Using the real-space dynamical mean field theory description of the strongly correlated quantum-paramagnet ground state we show that the local gap suppression follows from the increased hopping along the connected zig-zag chain of lattice sites forming the domain wall, and that full metallisation is preempted by the splitting of the quasiparticle band into bonding and antibonding sub-bands due to the structural dimerization of the wall, explaining the presence of the in-gap states and the low density of states at the Fermi level.
We present evidence of strain-induced modulation of electron correlation effects and increased orbital anisotropy in the rutile phase of epitaxial VO$_2$/TiO$_2$ films from hard x-ray photoelectron spectroscopy and soft V L-edge x-ray absorption spec troscopy, respectively. By using the U(1) slave spin formalism, we further argue that the observed anisotropic correlation effects can be understood by a model of orbital selective Mott transition at a filling that is non-integer, but close to the half-filling. Because the overlaps of wave functions between $d$ orbitals are modified by the strain, orbitally-dependent renormalizations of the bandwidths and the crystal fields occur with the application of strain. These renormalizations generally result in different occupation numbers in different orbitals. We find that if the system has a non-integer filling number near the half-filling such as for VO$_2$, certain orbitals could reach an occupation number closer to half-filling under the strain, resulting in a strong reduction in the quasiparticle weight $Z_{alpha}$ of that orbital. Moreover, an orbital selective Mott transition, defined as the case with $Z_{alpha} = 0$ in some, but not all orbitals, could be accessed by epitaxial strain-engineering of correlated electron systems.
239 - R. Okazaki , Y. Nishina , Y. Yasui 2013
We present nonlinear conduction phenomena in the Mott insulator Ca2RuO4 investigated with a proper evaluation of self-heating effects. By utilizing a non-contact infrared thermometer, the sample temperature was accurately determined even in the prese nce of large Joule heating. We find that the resistivity continuously decreases with currents under an isothermal environment. The nonlinearity and the resulting negative differential resistance occurs at relatively low current range, incompatible with conventional mechanisms such as hot electron or impact ionization. We propose a possible current-induced gap suppression scenario, which is also discussed in non-equilibrium superconducting state or charge-ordered insulator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا