ترغب بنشر مسار تعليمي؟ اضغط هنا

Extensive Benchmarking of DFT+U Calculations for Predicting Band Gaps

74   0   0.0 ( 0 )
 نشر من قبل Nicole Kirchner-Hall
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Accurate computational predictions of band gaps are of practical importance to the modeling and development of semiconductor technologies, such as (opto)electronic devices and photoelectrochemical cells. Among available electronic-structure methods, density-functional theory (DFT) with the Hubbard U correction (DFT+U) applied to band edge states is a computationally tractable approach to improve the accuracy of band gap predictions beyond that of DFT calculations based on (semi)local functionals. At variance with DFT approximations, which are not intended to describe optical band gaps and other excited-state properties, DFT+U can be interpreted as an approximate spectral-potential method when U is determined by imposing the piecewise linearity of the total energy with respect to electronic occupations in the Hubbard manifold (thus removing self-interaction errors in this subspace), thereby providing a (heuristic) justification for using DFT+U to predict band gaps. However, it is still frequent in the literature to determine the Hubbard U parameters semiempirically by tuning their values to reproduce experimental band gaps, which ultimately alters the description of other total-energy characteristics. Here, we present an extensive assessment of DFT+U band gaps computed using self-consistent ab initio U parameters obtained from density-functional perturbation theory to impose the aforementioned piecewise linearity of the total energy. The study is carried out on 20 compounds containing transition-metal or p-block (group III-IV) elements, including oxides, nitrides, sulfides, oxynitrides, and oxysulfides...



قيم البحث

اقرأ أيضاً

Band alignment between two materials is of fundamental importance for multitude of applications. However, density functional theory (DFT) either underestimates the bandgap - as is the case with local density approximation (LDA) or generalized gradien t approximation (GGA) - or is highly computationally demanding, as is the case with hybrid-functional methods. The latter can become prohibitive in electronic-structure calculations of supercells which describe quantum wells. We propose to apply the DFT$+U$ method, with $U$ for each atomic shell being treated as set of tuning parameters, to automatically fit the bulk bandgap and the lattice constant, and then use thus obtained $U$ parameters in large supercell calculations to determine the band alignment. We apply this procedure to InP/In$_{0.5}$Ga$_{0.5}$As, In$_{0.5}$Ga$_{0.5}$As/In$_{0.5}$Al$_{0.5}$As and InP/In$_{0.5}$Al$_{0.5}$As quantum wells, and obtain good agreement with experimental results. Although this procedure requires some experimental input, it provides both meaningful valence and conduction band offsets while, crucially, lattice relaxation is taken into account. The computational cost of this procedure is comparable to that of LDA. We believe that this is a practical procedure that can be useful for providing accurate estimate of band alignments between more complicated alloys.
We computed the optical properties and the folded and unfolded band structure of Cu-doped KCl crystals. The calculations use the plane-wave pseudo-potential approach implemented in the ABINIT electronic structure package within the first-principles d ensity-functional theory framework. Cu substitution into pristine KCl crystals requires calculation by the supercell (SC) method from a theoretical perspective. This procedure shrinks the Brillouin zone, resulting in a folded band structure that is difficult to interpret. To solve this problem and gain insight into the effect of cuprous ion (Cu+) on electronic properties; We unfolded the band structure of SC KCl:Cu to directly compare with the band structure of the primitive cell (PC) of pristine KCl. To understand the effect of Cu substitution on optical absorption, we calculated the imaginary part of the dielectric function of KCl:Cu through a sum-over-states formalism and broke it down into different band contributions by partially making an iterated cumulative sum (ICS) of selected valence and conduction bands. As a result, we identified those interband transitions that give rise to the absorption peaks due to the Cu ion. These transitions include valence and conduction bands formed by the Cu-3d and Cu-4s electronic states. To investigate the effects of doping position, we consider different doping positions, where the Cu dopant occupies all the substitutional sites replacing host K cations. Our results indicate that the doping positions effects give rise to two octahedral shapes in the geometric structure. The distorted-twisted octahedral square bipyramidal geometric-shape induces a difference in the crystal field splitting energy compared to that of the perfect octahedral square bipyramidal geometric-shape.
One of the key challenges to realize controlled fusion energy is tritium self-sufficiency. The application of hydrogen permeation barrier (HPB) is considered to be necessary for tritium self-sufficiency. {alpha}-Al2O3 is currently a candidate materia l for HPB. However, a crucial issue for {alpha}-Al2O3 is that its permeability reduction factor (PRF) will dramatically drop after ion or neutron irradiations. At present, little is known about the relevant mechanism. In order to shed light on this issue, the kinetics and energetic changes of hydrogen on defected {alpha}-Al2O3 surfaces in comparison with perfect {alpha}-Al2O3 surfaces were studied by density functional theory. For perfect {alpha}-Al2O3 surfaces, the results show that the barrier for hydrogen migration from the outermost layer into the subsurface layer is the highest, making this migration step to be a rate limiting process. In contrast, surface point defects dramatically reduce this maximum barrier. Consequently, hydrogen can preferentially permeate into the interior of the material through surface defects. The findings can help explain the possible mechanism of significant decrease of PRF under radiation.
Given the widespread use of density functional theory (DFT), there is an increasing need for the ability to model large systems (beyond 1,000 atoms). We present a brief overview of the large-scale DFT code Conquest, which is capable of modelling such large systems, and discuss approaches to the generation of consistent, well-converged pseudo-atomic basis sets which will allow such large scale calculations. We present tests of these basis sets for a variety of materials, comparing to fully converged plane wave results using the same pseudopotentials and grids.
With their broad range of magnetic, electronic and structural properties, transition metal perovskite oxides ABO3 have long served as a platform for testing condensed matter theories. In particular, their insulating character - found in most compound s - is often ascribed to dynamical electronic correlations through the celebrated Mott-Hubbard mechanism where gaping arises from a uniform, symmetry-preserving electron repulsion mechanism. However, structural distortions are ubiquitous in perovskites and their relevance with respect to dynamical correlations in producing this rich array of properties remains an open question. Here, we address the origin of band gap opening in the whole family of 3d perovskite oxides. We show that a single-determinant mean-field approach such as density functional theory (DFT) successfully describes the structural, magnetic and electronic properties of the whole series, at low and high temperatures. We find that insulation occurs via energy-lowering crystal symmetry reduction (octahedral rotations, Jahn-Teller and bond disproportionation effects), as well as intrinsic electronic instabilities, all lifting orbital degeneracies. Our work therefore suggests that whereas ABO3 oxides may be complicated, they are not necessarily strongly correlated. It also opens the way towards systematic investigations of doping and defect physics in perovskites, essential for the full realization of oxide-based electronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا